Safety of electrooxidation for urea removal in a wearable artificial kidney is compromised by formation of glucose degradation products

A major challenge for the development of a wearable artificial kidney (WAK) is the removal of urea from the spent dialysate, as urea is the waste solute with the highest daily molar production and is difficult to adsorb. Here we present results on glucose degradation products (GDPs) formed during el...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial organs 2021-11, Vol.45 (11), p.1422-1428
Hauptverfasser: Gelder, Maaike K., Vollenbroek, Jeroen C., Lentferink, Babette H., Hazenbrink, Diënty H. M., Besseling, Paul J., Simonis, Frank, Giovanella, Silvia, Ligabue, Giulia, Bajo Rubio, Maria A., Cappelli, Gianni, Joles, Jaap A., Verhaar, Marianne C., Gerritsen, Karin G. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1428
container_issue 11
container_start_page 1422
container_title Artificial organs
container_volume 45
creator Gelder, Maaike K.
Vollenbroek, Jeroen C.
Lentferink, Babette H.
Hazenbrink, Diënty H. M.
Besseling, Paul J.
Simonis, Frank
Giovanella, Silvia
Ligabue, Giulia
Bajo Rubio, Maria A.
Cappelli, Gianni
Joles, Jaap A.
Verhaar, Marianne C.
Gerritsen, Karin G. F.
description A major challenge for the development of a wearable artificial kidney (WAK) is the removal of urea from the spent dialysate, as urea is the waste solute with the highest daily molar production and is difficult to adsorb. Here we present results on glucose degradation products (GDPs) formed during electrooxidation (EO), a technique that applies a current to the dialysate to convert urea into nitrogen, carbon dioxide, and hydrogen gas. Uremic plasma and peritoneal effluent were dialyzed for 8 hours with a WAK with and without EO‐based dialysate regeneration. Samples were taken regularly during treatment. GDPs (glyoxal, methylglyoxal, and 3‐deoxyglucosone) were measured in EO‐ and non‐EO‐treated fluids. Glyoxal and methylglyoxal concentrations increased 26‐ and 11‐fold, respectively, in uremic plasma (at [glucose] 7 mmol/L) and 209‐ and 353‐fold, respectively, in peritoneal effluent (at [glucose] 100 mmol/L) during treatment with EO, whereas no change was observed in GDP concentrations during dialysate regeneration without EO. EO for dialysate regeneration in a WAK is currently not safe due to the generation of GDPs which are not biocompatible. Electrooxidation (EO) is currently not safe for dialysate regeneration in a wearable artificial kidney due to the generation of glucose degradation products (GDPs) which are not biocompatible. Glyoxal and methylglyoxal concentrations increased 26‐ and 11‐fold, respectively, in uremic plasma (at [glucose] 7 mmol/L) and 209‐ and 353‐fold, respectively, in peritoneal effluent (at [glucose] 100 mmol/L) during treatment with EO in vitro, whereas no change was observed in GDP concentrations during dialysate regeneration without EO (Figure 1).Figure 1. Concentrations of GDPs (µmol/L) in regenerated uremic plasma (A) and peritoneal effluent (B). GO, glyoxal; MGO, methylglyoxal; 3‐DG, 3‐deoxyglucosone. Solid line: EO on; dashed line: EO off. The mean ± SD of 3 experiments is presented.
doi_str_mv 10.1111/aor.14040
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8597045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550635550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4430-605b43312e6d8d03e7a00497ae9d305412c336dc23464a5986de1198b2a434f83</originalsourceid><addsrcrecordid>eNp1kctu1TAQhi0EoofCghdAltiURVo7viTZIFUVN6lSJS4SO2tiTw4uSXywk5Y8Aa-NDzlUgIQX48V8-mZGPyFPOTvl-Z1BiKdcMsnukQ1XpSq4auR9smFcs0Jp-fmIPErpmjFWSaYfkiMhS8V1IzbkxwfocFpo6Cj2aKcYwnfvYPJhpF2IdI4INOIQbqCnfqRAbxEitD1SiJPvvPW58dW7ERfqE7Vh2MUw-ISOtsteMayyPGDbzzYkpA63EQ4zMuxmO6XH5EEHfcInh_-YfHr96uPF2-Ly6s27i_PLwkopWKGZaqUQvETtascEVsCYbCrAxgmmJC-tENrZUkgtQTW1dsh5U7clSCG7WhyTl6t3N7cDOovjFKE3u-gHiIsJ4M3fndF_MdtwY2rVVEyqLDg5CGL4NmOaTD7WYt_DiGFOplSKaaFyzejzf9DrMMcxn5epmjeqrOq98MVK2RhSitjdLcOZ2cdrcrzmV7yZffbn9nfk7zwzcLYCt77H5f8mc371flX-BPpTsRs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581952785</pqid></control><display><type>article</type><title>Safety of electrooxidation for urea removal in a wearable artificial kidney is compromised by formation of glucose degradation products</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Gelder, Maaike K. ; Vollenbroek, Jeroen C. ; Lentferink, Babette H. ; Hazenbrink, Diënty H. M. ; Besseling, Paul J. ; Simonis, Frank ; Giovanella, Silvia ; Ligabue, Giulia ; Bajo Rubio, Maria A. ; Cappelli, Gianni ; Joles, Jaap A. ; Verhaar, Marianne C. ; Gerritsen, Karin G. F.</creator><creatorcontrib>Gelder, Maaike K. ; Vollenbroek, Jeroen C. ; Lentferink, Babette H. ; Hazenbrink, Diënty H. M. ; Besseling, Paul J. ; Simonis, Frank ; Giovanella, Silvia ; Ligabue, Giulia ; Bajo Rubio, Maria A. ; Cappelli, Gianni ; Joles, Jaap A. ; Verhaar, Marianne C. ; Gerritsen, Karin G. F.</creatorcontrib><description>A major challenge for the development of a wearable artificial kidney (WAK) is the removal of urea from the spent dialysate, as urea is the waste solute with the highest daily molar production and is difficult to adsorb. Here we present results on glucose degradation products (GDPs) formed during electrooxidation (EO), a technique that applies a current to the dialysate to convert urea into nitrogen, carbon dioxide, and hydrogen gas. Uremic plasma and peritoneal effluent were dialyzed for 8 hours with a WAK with and without EO‐based dialysate regeneration. Samples were taken regularly during treatment. GDPs (glyoxal, methylglyoxal, and 3‐deoxyglucosone) were measured in EO‐ and non‐EO‐treated fluids. Glyoxal and methylglyoxal concentrations increased 26‐ and 11‐fold, respectively, in uremic plasma (at [glucose] 7 mmol/L) and 209‐ and 353‐fold, respectively, in peritoneal effluent (at [glucose] 100 mmol/L) during treatment with EO, whereas no change was observed in GDP concentrations during dialysate regeneration without EO. EO for dialysate regeneration in a WAK is currently not safe due to the generation of GDPs which are not biocompatible. Electrooxidation (EO) is currently not safe for dialysate regeneration in a wearable artificial kidney due to the generation of glucose degradation products (GDPs) which are not biocompatible. Glyoxal and methylglyoxal concentrations increased 26‐ and 11‐fold, respectively, in uremic plasma (at [glucose] 7 mmol/L) and 209‐ and 353‐fold, respectively, in peritoneal effluent (at [glucose] 100 mmol/L) during treatment with EO in vitro, whereas no change was observed in GDP concentrations during dialysate regeneration without EO (Figure 1).Figure 1. Concentrations of GDPs (µmol/L) in regenerated uremic plasma (A) and peritoneal effluent (B). GO, glyoxal; MGO, methylglyoxal; 3‐DG, 3‐deoxyglucosone. Solid line: EO on; dashed line: EO off. The mean ± SD of 3 experiments is presented.</description><identifier>ISSN: 0160-564X</identifier><identifier>EISSN: 1525-1594</identifier><identifier>DOI: 10.1111/aor.14040</identifier><identifier>PMID: 34251693</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>3‐Deoxyglucosone ; artificial kidney ; Biocompatibility ; Carbon dioxide ; Degradation ; Degradation products ; Dialysate ; Dialysis Solutions - chemistry ; Effluents ; Electrochemical Techniques ; electrooxidation ; Glucose ; Glucose - metabolism ; glucose degradation products ; glyoxal ; Hemodialysis ; Humans ; Kidneys ; Kidneys, Artificial ; Main Text ; methylglyoxal ; peritoneal dialysis ; Peritoneum ; Pyruvaldehyde ; Regeneration ; Renal Dialysis ; Urea ; Urea - blood ; Ureas ; Wearable Electronic Devices ; Wearable technology</subject><ispartof>Artificial organs, 2021-11, Vol.45 (11), p.1422-1428</ispartof><rights>2021 The Authors. published by International Center for Artificial Organ and Transplantation (ICAOT) and Wiley Periodicals LLC.</rights><rights>2021 The Authors. Artificial Organs published by International Center for Artificial Organ and Transplantation (ICAOT) and Wiley Periodicals LLC.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4430-605b43312e6d8d03e7a00497ae9d305412c336dc23464a5986de1198b2a434f83</citedby><cites>FETCH-LOGICAL-c4430-605b43312e6d8d03e7a00497ae9d305412c336dc23464a5986de1198b2a434f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Faor.14040$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Faor.14040$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34251693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gelder, Maaike K.</creatorcontrib><creatorcontrib>Vollenbroek, Jeroen C.</creatorcontrib><creatorcontrib>Lentferink, Babette H.</creatorcontrib><creatorcontrib>Hazenbrink, Diënty H. M.</creatorcontrib><creatorcontrib>Besseling, Paul J.</creatorcontrib><creatorcontrib>Simonis, Frank</creatorcontrib><creatorcontrib>Giovanella, Silvia</creatorcontrib><creatorcontrib>Ligabue, Giulia</creatorcontrib><creatorcontrib>Bajo Rubio, Maria A.</creatorcontrib><creatorcontrib>Cappelli, Gianni</creatorcontrib><creatorcontrib>Joles, Jaap A.</creatorcontrib><creatorcontrib>Verhaar, Marianne C.</creatorcontrib><creatorcontrib>Gerritsen, Karin G. F.</creatorcontrib><title>Safety of electrooxidation for urea removal in a wearable artificial kidney is compromised by formation of glucose degradation products</title><title>Artificial organs</title><addtitle>Artif Organs</addtitle><description>A major challenge for the development of a wearable artificial kidney (WAK) is the removal of urea from the spent dialysate, as urea is the waste solute with the highest daily molar production and is difficult to adsorb. Here we present results on glucose degradation products (GDPs) formed during electrooxidation (EO), a technique that applies a current to the dialysate to convert urea into nitrogen, carbon dioxide, and hydrogen gas. Uremic plasma and peritoneal effluent were dialyzed for 8 hours with a WAK with and without EO‐based dialysate regeneration. Samples were taken regularly during treatment. GDPs (glyoxal, methylglyoxal, and 3‐deoxyglucosone) were measured in EO‐ and non‐EO‐treated fluids. Glyoxal and methylglyoxal concentrations increased 26‐ and 11‐fold, respectively, in uremic plasma (at [glucose] 7 mmol/L) and 209‐ and 353‐fold, respectively, in peritoneal effluent (at [glucose] 100 mmol/L) during treatment with EO, whereas no change was observed in GDP concentrations during dialysate regeneration without EO. EO for dialysate regeneration in a WAK is currently not safe due to the generation of GDPs which are not biocompatible. Electrooxidation (EO) is currently not safe for dialysate regeneration in a wearable artificial kidney due to the generation of glucose degradation products (GDPs) which are not biocompatible. Glyoxal and methylglyoxal concentrations increased 26‐ and 11‐fold, respectively, in uremic plasma (at [glucose] 7 mmol/L) and 209‐ and 353‐fold, respectively, in peritoneal effluent (at [glucose] 100 mmol/L) during treatment with EO in vitro, whereas no change was observed in GDP concentrations during dialysate regeneration without EO (Figure 1).Figure 1. Concentrations of GDPs (µmol/L) in regenerated uremic plasma (A) and peritoneal effluent (B). GO, glyoxal; MGO, methylglyoxal; 3‐DG, 3‐deoxyglucosone. Solid line: EO on; dashed line: EO off. The mean ± SD of 3 experiments is presented.</description><subject>3‐Deoxyglucosone</subject><subject>artificial kidney</subject><subject>Biocompatibility</subject><subject>Carbon dioxide</subject><subject>Degradation</subject><subject>Degradation products</subject><subject>Dialysate</subject><subject>Dialysis Solutions - chemistry</subject><subject>Effluents</subject><subject>Electrochemical Techniques</subject><subject>electrooxidation</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>glucose degradation products</subject><subject>glyoxal</subject><subject>Hemodialysis</subject><subject>Humans</subject><subject>Kidneys</subject><subject>Kidneys, Artificial</subject><subject>Main Text</subject><subject>methylglyoxal</subject><subject>peritoneal dialysis</subject><subject>Peritoneum</subject><subject>Pyruvaldehyde</subject><subject>Regeneration</subject><subject>Renal Dialysis</subject><subject>Urea</subject><subject>Urea - blood</subject><subject>Ureas</subject><subject>Wearable Electronic Devices</subject><subject>Wearable technology</subject><issn>0160-564X</issn><issn>1525-1594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kctu1TAQhi0EoofCghdAltiURVo7viTZIFUVN6lSJS4SO2tiTw4uSXywk5Y8Aa-NDzlUgIQX48V8-mZGPyFPOTvl-Z1BiKdcMsnukQ1XpSq4auR9smFcs0Jp-fmIPErpmjFWSaYfkiMhS8V1IzbkxwfocFpo6Cj2aKcYwnfvYPJhpF2IdI4INOIQbqCnfqRAbxEitD1SiJPvvPW58dW7ERfqE7Vh2MUw-ISOtsteMayyPGDbzzYkpA63EQ4zMuxmO6XH5EEHfcInh_-YfHr96uPF2-Ly6s27i_PLwkopWKGZaqUQvETtascEVsCYbCrAxgmmJC-tENrZUkgtQTW1dsh5U7clSCG7WhyTl6t3N7cDOovjFKE3u-gHiIsJ4M3fndF_MdtwY2rVVEyqLDg5CGL4NmOaTD7WYt_DiGFOplSKaaFyzejzf9DrMMcxn5epmjeqrOq98MVK2RhSitjdLcOZ2cdrcrzmV7yZffbn9nfk7zwzcLYCt77H5f8mc371flX-BPpTsRs</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Gelder, Maaike K.</creator><creator>Vollenbroek, Jeroen C.</creator><creator>Lentferink, Babette H.</creator><creator>Hazenbrink, Diënty H. M.</creator><creator>Besseling, Paul J.</creator><creator>Simonis, Frank</creator><creator>Giovanella, Silvia</creator><creator>Ligabue, Giulia</creator><creator>Bajo Rubio, Maria A.</creator><creator>Cappelli, Gianni</creator><creator>Joles, Jaap A.</creator><creator>Verhaar, Marianne C.</creator><creator>Gerritsen, Karin G. F.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202111</creationdate><title>Safety of electrooxidation for urea removal in a wearable artificial kidney is compromised by formation of glucose degradation products</title><author>Gelder, Maaike K. ; Vollenbroek, Jeroen C. ; Lentferink, Babette H. ; Hazenbrink, Diënty H. M. ; Besseling, Paul J. ; Simonis, Frank ; Giovanella, Silvia ; Ligabue, Giulia ; Bajo Rubio, Maria A. ; Cappelli, Gianni ; Joles, Jaap A. ; Verhaar, Marianne C. ; Gerritsen, Karin G. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4430-605b43312e6d8d03e7a00497ae9d305412c336dc23464a5986de1198b2a434f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3‐Deoxyglucosone</topic><topic>artificial kidney</topic><topic>Biocompatibility</topic><topic>Carbon dioxide</topic><topic>Degradation</topic><topic>Degradation products</topic><topic>Dialysate</topic><topic>Dialysis Solutions - chemistry</topic><topic>Effluents</topic><topic>Electrochemical Techniques</topic><topic>electrooxidation</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>glucose degradation products</topic><topic>glyoxal</topic><topic>Hemodialysis</topic><topic>Humans</topic><topic>Kidneys</topic><topic>Kidneys, Artificial</topic><topic>Main Text</topic><topic>methylglyoxal</topic><topic>peritoneal dialysis</topic><topic>Peritoneum</topic><topic>Pyruvaldehyde</topic><topic>Regeneration</topic><topic>Renal Dialysis</topic><topic>Urea</topic><topic>Urea - blood</topic><topic>Ureas</topic><topic>Wearable Electronic Devices</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gelder, Maaike K.</creatorcontrib><creatorcontrib>Vollenbroek, Jeroen C.</creatorcontrib><creatorcontrib>Lentferink, Babette H.</creatorcontrib><creatorcontrib>Hazenbrink, Diënty H. M.</creatorcontrib><creatorcontrib>Besseling, Paul J.</creatorcontrib><creatorcontrib>Simonis, Frank</creatorcontrib><creatorcontrib>Giovanella, Silvia</creatorcontrib><creatorcontrib>Ligabue, Giulia</creatorcontrib><creatorcontrib>Bajo Rubio, Maria A.</creatorcontrib><creatorcontrib>Cappelli, Gianni</creatorcontrib><creatorcontrib>Joles, Jaap A.</creatorcontrib><creatorcontrib>Verhaar, Marianne C.</creatorcontrib><creatorcontrib>Gerritsen, Karin G. F.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Artificial organs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gelder, Maaike K.</au><au>Vollenbroek, Jeroen C.</au><au>Lentferink, Babette H.</au><au>Hazenbrink, Diënty H. M.</au><au>Besseling, Paul J.</au><au>Simonis, Frank</au><au>Giovanella, Silvia</au><au>Ligabue, Giulia</au><au>Bajo Rubio, Maria A.</au><au>Cappelli, Gianni</au><au>Joles, Jaap A.</au><au>Verhaar, Marianne C.</au><au>Gerritsen, Karin G. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Safety of electrooxidation for urea removal in a wearable artificial kidney is compromised by formation of glucose degradation products</atitle><jtitle>Artificial organs</jtitle><addtitle>Artif Organs</addtitle><date>2021-11</date><risdate>2021</risdate><volume>45</volume><issue>11</issue><spage>1422</spage><epage>1428</epage><pages>1422-1428</pages><issn>0160-564X</issn><eissn>1525-1594</eissn><abstract>A major challenge for the development of a wearable artificial kidney (WAK) is the removal of urea from the spent dialysate, as urea is the waste solute with the highest daily molar production and is difficult to adsorb. Here we present results on glucose degradation products (GDPs) formed during electrooxidation (EO), a technique that applies a current to the dialysate to convert urea into nitrogen, carbon dioxide, and hydrogen gas. Uremic plasma and peritoneal effluent were dialyzed for 8 hours with a WAK with and without EO‐based dialysate regeneration. Samples were taken regularly during treatment. GDPs (glyoxal, methylglyoxal, and 3‐deoxyglucosone) were measured in EO‐ and non‐EO‐treated fluids. Glyoxal and methylglyoxal concentrations increased 26‐ and 11‐fold, respectively, in uremic plasma (at [glucose] 7 mmol/L) and 209‐ and 353‐fold, respectively, in peritoneal effluent (at [glucose] 100 mmol/L) during treatment with EO, whereas no change was observed in GDP concentrations during dialysate regeneration without EO. EO for dialysate regeneration in a WAK is currently not safe due to the generation of GDPs which are not biocompatible. Electrooxidation (EO) is currently not safe for dialysate regeneration in a wearable artificial kidney due to the generation of glucose degradation products (GDPs) which are not biocompatible. Glyoxal and methylglyoxal concentrations increased 26‐ and 11‐fold, respectively, in uremic plasma (at [glucose] 7 mmol/L) and 209‐ and 353‐fold, respectively, in peritoneal effluent (at [glucose] 100 mmol/L) during treatment with EO in vitro, whereas no change was observed in GDP concentrations during dialysate regeneration without EO (Figure 1).Figure 1. Concentrations of GDPs (µmol/L) in regenerated uremic plasma (A) and peritoneal effluent (B). GO, glyoxal; MGO, methylglyoxal; 3‐DG, 3‐deoxyglucosone. Solid line: EO on; dashed line: EO off. The mean ± SD of 3 experiments is presented.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34251693</pmid><doi>10.1111/aor.14040</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0160-564X
ispartof Artificial organs, 2021-11, Vol.45 (11), p.1422-1428
issn 0160-564X
1525-1594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8597045
source MEDLINE; Access via Wiley Online Library
subjects 3‐Deoxyglucosone
artificial kidney
Biocompatibility
Carbon dioxide
Degradation
Degradation products
Dialysate
Dialysis Solutions - chemistry
Effluents
Electrochemical Techniques
electrooxidation
Glucose
Glucose - metabolism
glucose degradation products
glyoxal
Hemodialysis
Humans
Kidneys
Kidneys, Artificial
Main Text
methylglyoxal
peritoneal dialysis
Peritoneum
Pyruvaldehyde
Regeneration
Renal Dialysis
Urea
Urea - blood
Ureas
Wearable Electronic Devices
Wearable technology
title Safety of electrooxidation for urea removal in a wearable artificial kidney is compromised by formation of glucose degradation products
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A16%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Safety%20of%20electrooxidation%20for%20urea%20removal%20in%20a%20wearable%20artificial%20kidney%20is%20compromised%20by%20formation%20of%20glucose%20degradation%20products&rft.jtitle=Artificial%20organs&rft.au=Gelder,%20Maaike%20K.&rft.date=2021-11&rft.volume=45&rft.issue=11&rft.spage=1422&rft.epage=1428&rft.pages=1422-1428&rft.issn=0160-564X&rft.eissn=1525-1594&rft_id=info:doi/10.1111/aor.14040&rft_dat=%3Cproquest_pubme%3E2550635550%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581952785&rft_id=info:pmid/34251693&rfr_iscdi=true