Red blood cells under flow show maximal ATP release for specific hematocrit

ATP release by red blood cells (RBCs) under shear stress (SS) plays a pivotal role in endothelial biochemical signaling cascades. The aim of this study is to investigate through numerical simulation how RBC spatiotemporal organization depends on flow and geometrical conditions to generate ATP patter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2021-11, Vol.120 (21), p.4819-4831
Hauptverfasser: Gou, Zhe, Zhang, Hengdi, Abbasi, Mehdi, Misbah, Chaouqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4831
container_issue 21
container_start_page 4819
container_title Biophysical journal
container_volume 120
creator Gou, Zhe
Zhang, Hengdi
Abbasi, Mehdi
Misbah, Chaouqi
description ATP release by red blood cells (RBCs) under shear stress (SS) plays a pivotal role in endothelial biochemical signaling cascades. The aim of this study is to investigate through numerical simulation how RBC spatiotemporal organization depends on flow and geometrical conditions to generate ATP patterns. Numerical simulations were conducted in a straight channel by considering both plasma and explicit presence of RBCs, their shape deformation and cell-cell interaction, and ATP release by RBCs. Two ATP release pathways through cell membrane are taken into account: pannexin 1 channel, sensitive to SS, and cystic fibrosis transmembrane conductance regulator, which responds to cell deformation. Several flow and hematocrit conditions are explored. The problem is solved by the lattice Boltzmann method. Application of SS to the RBC suspension triggers a nontrivial spatial RBC organization and ATP patterns. ATP localizes preferentially in the vicinity of the cell-free layer close to channel wall. Conditions for maximal ATP release per cell are identified, which depend on vessel size and hematocrit Ht. Increasing further Ht beyond optimum enhances the total ATP release but should degrade oxygen transport capacity, a compromise between an efficient ATP release and minimal blood dissipation. Moreover, ATP is boosted in capillaries, suggesting a vasomotor activity coordination throughout the resistance network.
doi_str_mv 10.1016/j.bpj.2021.09.025
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8595901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349521007876</els_id><sourcerecordid>2575376684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-98a14df726e08decaf696e0485de71eccf5e262d1e5ede4cb36012c4a987fc9a3</originalsourceid><addsrcrecordid>eNp9UU2LFDEQDeLijqs_wFuOeui2ks5HN4IwLOqKA7vIeg6ZpNrJ0N0Zk57R_femmUXQg5eqIvXeS_EeIa8Y1AyYeruvt4d9zYGzGroauHxCVkwKXgG06ilZAYCqGtHJS_I85z0A4xLYM3LZCCk013pFvnxFT7dDjJ46HIZMj5PHRPsh_qR5V8pof4XRDnR9f0cTDmgz0j4mmg_oQh8c3eFo5-hSmF-Qi94OGV8-9ivy7eOH--ubanP76fP1elM5ofhcda1lwveaK4TWo7O96sooWulRM3Sul8gV9wwlehRu26hyuBO2a3XvOttckfdn3cNxO6J3OM3JDuaQyqHpwUQbzN-bKezM93gyrexkB6wIvDkL7P6h3aw3ZnmDYhA0WpwW7OvHz1L8ccQ8mzHkxSo7YTxmw6WWjVaqFQXKzlCXYs4J-z_aDMwSmNmbEphZAjPQmRJY4bw7c7AYdgqYTHYBJ4c-JHSz8TH8h_0bsxmdHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575376684</pqid></control><display><type>article</type><title>Red blood cells under flow show maximal ATP release for specific hematocrit</title><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><source>PubMed Central</source><creator>Gou, Zhe ; Zhang, Hengdi ; Abbasi, Mehdi ; Misbah, Chaouqi</creator><creatorcontrib>Gou, Zhe ; Zhang, Hengdi ; Abbasi, Mehdi ; Misbah, Chaouqi</creatorcontrib><description>ATP release by red blood cells (RBCs) under shear stress (SS) plays a pivotal role in endothelial biochemical signaling cascades. The aim of this study is to investigate through numerical simulation how RBC spatiotemporal organization depends on flow and geometrical conditions to generate ATP patterns. Numerical simulations were conducted in a straight channel by considering both plasma and explicit presence of RBCs, their shape deformation and cell-cell interaction, and ATP release by RBCs. Two ATP release pathways through cell membrane are taken into account: pannexin 1 channel, sensitive to SS, and cystic fibrosis transmembrane conductance regulator, which responds to cell deformation. Several flow and hematocrit conditions are explored. The problem is solved by the lattice Boltzmann method. Application of SS to the RBC suspension triggers a nontrivial spatial RBC organization and ATP patterns. ATP localizes preferentially in the vicinity of the cell-free layer close to channel wall. Conditions for maximal ATP release per cell are identified, which depend on vessel size and hematocrit Ht. Increasing further Ht beyond optimum enhances the total ATP release but should degrade oxygen transport capacity, a compromise between an efficient ATP release and minimal blood dissipation. Moreover, ATP is boosted in capillaries, suggesting a vasomotor activity coordination throughout the resistance network.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2021.09.025</identifier><identifier>PMID: 34547277</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Physics</subject><ispartof>Biophysical journal, 2021-11, Vol.120 (21), p.4819-4831</ispartof><rights>2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2021. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-98a14df726e08decaf696e0485de71eccf5e262d1e5ede4cb36012c4a987fc9a3</citedby><cites>FETCH-LOGICAL-c462t-98a14df726e08decaf696e0485de71eccf5e262d1e5ede4cb36012c4a987fc9a3</cites><orcidid>0000-0003-0135-2692 ; 0000-0001-5793-8102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8595901/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2021.09.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27923,27924,45994,53790,53792</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03450374$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gou, Zhe</creatorcontrib><creatorcontrib>Zhang, Hengdi</creatorcontrib><creatorcontrib>Abbasi, Mehdi</creatorcontrib><creatorcontrib>Misbah, Chaouqi</creatorcontrib><title>Red blood cells under flow show maximal ATP release for specific hematocrit</title><title>Biophysical journal</title><description>ATP release by red blood cells (RBCs) under shear stress (SS) plays a pivotal role in endothelial biochemical signaling cascades. The aim of this study is to investigate through numerical simulation how RBC spatiotemporal organization depends on flow and geometrical conditions to generate ATP patterns. Numerical simulations were conducted in a straight channel by considering both plasma and explicit presence of RBCs, their shape deformation and cell-cell interaction, and ATP release by RBCs. Two ATP release pathways through cell membrane are taken into account: pannexin 1 channel, sensitive to SS, and cystic fibrosis transmembrane conductance regulator, which responds to cell deformation. Several flow and hematocrit conditions are explored. The problem is solved by the lattice Boltzmann method. Application of SS to the RBC suspension triggers a nontrivial spatial RBC organization and ATP patterns. ATP localizes preferentially in the vicinity of the cell-free layer close to channel wall. Conditions for maximal ATP release per cell are identified, which depend on vessel size and hematocrit Ht. Increasing further Ht beyond optimum enhances the total ATP release but should degrade oxygen transport capacity, a compromise between an efficient ATP release and minimal blood dissipation. Moreover, ATP is boosted in capillaries, suggesting a vasomotor activity coordination throughout the resistance network.</description><subject>Physics</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UU2LFDEQDeLijqs_wFuOeui2ks5HN4IwLOqKA7vIeg6ZpNrJ0N0Zk57R_femmUXQg5eqIvXeS_EeIa8Y1AyYeruvt4d9zYGzGroauHxCVkwKXgG06ilZAYCqGtHJS_I85z0A4xLYM3LZCCk013pFvnxFT7dDjJ46HIZMj5PHRPsh_qR5V8pof4XRDnR9f0cTDmgz0j4mmg_oQh8c3eFo5-hSmF-Qi94OGV8-9ivy7eOH--ubanP76fP1elM5ofhcda1lwveaK4TWo7O96sooWulRM3Sul8gV9wwlehRu26hyuBO2a3XvOttckfdn3cNxO6J3OM3JDuaQyqHpwUQbzN-bKezM93gyrexkB6wIvDkL7P6h3aw3ZnmDYhA0WpwW7OvHz1L8ccQ8mzHkxSo7YTxmw6WWjVaqFQXKzlCXYs4J-z_aDMwSmNmbEphZAjPQmRJY4bw7c7AYdgqYTHYBJ4c-JHSz8TH8h_0bsxmdHA</recordid><startdate>20211102</startdate><enddate>20211102</enddate><creator>Gou, Zhe</creator><creator>Zhang, Hengdi</creator><creator>Abbasi, Mehdi</creator><creator>Misbah, Chaouqi</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0135-2692</orcidid><orcidid>https://orcid.org/0000-0001-5793-8102</orcidid></search><sort><creationdate>20211102</creationdate><title>Red blood cells under flow show maximal ATP release for specific hematocrit</title><author>Gou, Zhe ; Zhang, Hengdi ; Abbasi, Mehdi ; Misbah, Chaouqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-98a14df726e08decaf696e0485de71eccf5e262d1e5ede4cb36012c4a987fc9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gou, Zhe</creatorcontrib><creatorcontrib>Zhang, Hengdi</creatorcontrib><creatorcontrib>Abbasi, Mehdi</creatorcontrib><creatorcontrib>Misbah, Chaouqi</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gou, Zhe</au><au>Zhang, Hengdi</au><au>Abbasi, Mehdi</au><au>Misbah, Chaouqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Red blood cells under flow show maximal ATP release for specific hematocrit</atitle><jtitle>Biophysical journal</jtitle><date>2021-11-02</date><risdate>2021</risdate><volume>120</volume><issue>21</issue><spage>4819</spage><epage>4831</epage><pages>4819-4831</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>ATP release by red blood cells (RBCs) under shear stress (SS) plays a pivotal role in endothelial biochemical signaling cascades. The aim of this study is to investigate through numerical simulation how RBC spatiotemporal organization depends on flow and geometrical conditions to generate ATP patterns. Numerical simulations were conducted in a straight channel by considering both plasma and explicit presence of RBCs, their shape deformation and cell-cell interaction, and ATP release by RBCs. Two ATP release pathways through cell membrane are taken into account: pannexin 1 channel, sensitive to SS, and cystic fibrosis transmembrane conductance regulator, which responds to cell deformation. Several flow and hematocrit conditions are explored. The problem is solved by the lattice Boltzmann method. Application of SS to the RBC suspension triggers a nontrivial spatial RBC organization and ATP patterns. ATP localizes preferentially in the vicinity of the cell-free layer close to channel wall. Conditions for maximal ATP release per cell are identified, which depend on vessel size and hematocrit Ht. Increasing further Ht beyond optimum enhances the total ATP release but should degrade oxygen transport capacity, a compromise between an efficient ATP release and minimal blood dissipation. Moreover, ATP is boosted in capillaries, suggesting a vasomotor activity coordination throughout the resistance network.</abstract><pub>Elsevier Inc</pub><pmid>34547277</pmid><doi>10.1016/j.bpj.2021.09.025</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0135-2692</orcidid><orcidid>https://orcid.org/0000-0001-5793-8102</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2021-11, Vol.120 (21), p.4819-4831
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8595901
source Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present); PubMed Central
subjects Physics
title Red blood cells under flow show maximal ATP release for specific hematocrit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A49%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Red%20blood%20cells%20under%20flow%20show%20maximal%20ATP%20release%20for%20specific%20hematocrit&rft.jtitle=Biophysical%20journal&rft.au=Gou,%20Zhe&rft.date=2021-11-02&rft.volume=120&rft.issue=21&rft.spage=4819&rft.epage=4831&rft.pages=4819-4831&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2021.09.025&rft_dat=%3Cproquest_pubme%3E2575376684%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575376684&rft_id=info:pmid/34547277&rft_els_id=S0006349521007876&rfr_iscdi=true