Ice2 promotes ER membrane biogenesis in yeast by inhibiting the conserved lipin phosphatase complex

Cells dynamically adapt organelle size to current physiological demand. Organelle growth requires membrane biogenesis and therefore needs to be coordinated with lipid metabolism. The endoplasmic reticulum (ER) can undergo massive expansion, but the underlying regulatory mechanisms are largely unclea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2021-11, Vol.40 (22), p.e107958-n/a
Hauptverfasser: Papagiannidis, Dimitrios, Bircham, Peter W, Lüchtenborg, Christian, Pajonk, Oliver, Ruffini, Giulia, Brügger, Britta, Schuck, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 22
container_start_page e107958
container_title The EMBO journal
container_volume 40
creator Papagiannidis, Dimitrios
Bircham, Peter W
Lüchtenborg, Christian
Pajonk, Oliver
Ruffini, Giulia
Brügger, Britta
Schuck, Sebastian
description Cells dynamically adapt organelle size to current physiological demand. Organelle growth requires membrane biogenesis and therefore needs to be coordinated with lipid metabolism. The endoplasmic reticulum (ER) can undergo massive expansion, but the underlying regulatory mechanisms are largely unclear. Here, we describe a genetic screen for factors involved in ER membrane expansion in budding yeast and identify the ER transmembrane protein Ice2 as a strong hit. We show that Ice2 promotes ER membrane biogenesis by opposing the phosphatidic acid phosphatase Pah1, called lipin in metazoa. Specifically, Ice2 inhibits the conserved Nem1‐Spo7 complex and thus suppresses the dephosphorylation and activation of Pah1. Furthermore, Ice2 cooperates with the transcriptional regulation of lipid synthesis genes and helps to maintain cell homeostasis during ER stress. These findings establish the control of the lipin phosphatase complex as an important mechanism for regulating ER membrane biogenesis. Synopsis Organelle biogenesis typically requires synthesis of new membrane and thus depends on lipid metabolism. A genetic screen identifies the ER protein Ice2 as a regulator of lipid metabolism and a major factor for ER membrane biogenesis. Ice2 regulates lipid metabolism and promotes ER membrane biogenesis through inhibition of the phosphatidic acid phosphatase Pah1/lipin Ice2 opposes Pah1 activation by interacting with and restraining the Nem1‐Spo7 phosphatase complex Ice2 cooperates with the transcriptional regulators of lipid metabolism Opi1‐Ino2/4 to control ER membrane biogenesis Ice2 regulation of lipid metabolism helps to maintain ER homeostasis and supports cell growth, particularly during ER stress Graphical Abstract A screen for factors involved in ER membrane expansion identifies a role for ER transmembrane protein Ice2 via inhibition of the Nem1‐Spo7/Pah1‐lipin phosphatase cascade.
doi_str_mv 10.15252/embj.2021107958
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8591542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597415435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5198-228d3b2bf8ef353097122c91a8ceea6db544111fd07a51dd8588b5460bd8ee663</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EosvCnROyxIVLiseJE0dCSKVa2qJWSAjOlu1MNl4lcbCzhf33eNnS0kqIky3Pe9_M-BHyEtgxCC74WxzM5pgzDsCqWshHZAFFyTLOKvGYLBgvIStA1kfkWYwbxpiQFTwlR3lRQiVquSD2wiKnU_CDnzHS1Rc6JGbQI1Lj_BpHjC5SN9Id6jhTs0v3zhk3u3FN5w6p9WPEcI0N7d2UdFPn49TpWcd9bZh6_PmcPGl1H_HFzbkk3z6uvp6eZ5efzy5OTy4zK6CWGeeyyQ03rcQ2FzmrK-Dc1qClRdRlY0RRAEDbsEoLaBoppExvJTONRCzLfEneH7jT1gzYWBznoHs1BTfosFNeO3W_MrpOrf21kqIGUfAEeHMDCP77FuOsBhct9n36Dr-NigvJGMhK7nu9fiDd-G0Y03pJVVdF4qUdloQdVDb4GAO2t8MAU78TVPsE1V2CyfLq7yVuDX8iS4J3B8EP1-Puv0C1uvrw6R4fDvaYnOMaw93g_5zpFwCWuhM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597415435</pqid></control><display><type>article</type><title>Ice2 promotes ER membrane biogenesis in yeast by inhibiting the conserved lipin phosphatase complex</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Papagiannidis, Dimitrios ; Bircham, Peter W ; Lüchtenborg, Christian ; Pajonk, Oliver ; Ruffini, Giulia ; Brügger, Britta ; Schuck, Sebastian</creator><creatorcontrib>Papagiannidis, Dimitrios ; Bircham, Peter W ; Lüchtenborg, Christian ; Pajonk, Oliver ; Ruffini, Giulia ; Brügger, Britta ; Schuck, Sebastian</creatorcontrib><description>Cells dynamically adapt organelle size to current physiological demand. Organelle growth requires membrane biogenesis and therefore needs to be coordinated with lipid metabolism. The endoplasmic reticulum (ER) can undergo massive expansion, but the underlying regulatory mechanisms are largely unclear. Here, we describe a genetic screen for factors involved in ER membrane expansion in budding yeast and identify the ER transmembrane protein Ice2 as a strong hit. We show that Ice2 promotes ER membrane biogenesis by opposing the phosphatidic acid phosphatase Pah1, called lipin in metazoa. Specifically, Ice2 inhibits the conserved Nem1‐Spo7 complex and thus suppresses the dephosphorylation and activation of Pah1. Furthermore, Ice2 cooperates with the transcriptional regulation of lipid synthesis genes and helps to maintain cell homeostasis during ER stress. These findings establish the control of the lipin phosphatase complex as an important mechanism for regulating ER membrane biogenesis. Synopsis Organelle biogenesis typically requires synthesis of new membrane and thus depends on lipid metabolism. A genetic screen identifies the ER protein Ice2 as a regulator of lipid metabolism and a major factor for ER membrane biogenesis. Ice2 regulates lipid metabolism and promotes ER membrane biogenesis through inhibition of the phosphatidic acid phosphatase Pah1/lipin Ice2 opposes Pah1 activation by interacting with and restraining the Nem1‐Spo7 phosphatase complex Ice2 cooperates with the transcriptional regulators of lipid metabolism Opi1‐Ino2/4 to control ER membrane biogenesis Ice2 regulation of lipid metabolism helps to maintain ER homeostasis and supports cell growth, particularly during ER stress Graphical Abstract A screen for factors involved in ER membrane expansion identifies a role for ER transmembrane protein Ice2 via inhibition of the Nem1‐Spo7/Pah1‐lipin phosphatase cascade.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2021107958</identifier><identifier>PMID: 34617598</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Acid phosphatase ; Biosynthesis ; Cell size ; Dephosphorylation ; EMBO20 ; Endoplasmic reticulum ; Endoplasmic Reticulum - genetics ; Endoplasmic Reticulum - metabolism ; Endoplasmic Reticulum Stress ; Gene Expression Regulation, Fungal ; Gene regulation ; Genetic screening ; Homeostasis ; Intracellular Membranes - metabolism ; lipid droplets ; Lipid Metabolism ; Lipids ; lipin ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Membranes ; Metabolism ; Multiprotein Complexes - metabolism ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Opi1 ; organelle biogenesis ; Organic Chemicals - metabolism ; Phosphatase ; Phosphatidate Phosphatase - genetics ; Phosphatidate Phosphatase - metabolism ; Phosphatidic acid ; Phosphorylation ; Proteins ; Regulatory mechanisms (biology) ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Synthesis ; Transcription ; Unfolded Protein Response ; Yeast ; Yeasts</subject><ispartof>The EMBO journal, 2021-11, Vol.40 (22), p.e107958-n/a</ispartof><rights>The Author(s) 2021</rights><rights>2021 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2021 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5198-228d3b2bf8ef353097122c91a8ceea6db544111fd07a51dd8588b5460bd8ee663</citedby><cites>FETCH-LOGICAL-c5198-228d3b2bf8ef353097122c91a8ceea6db544111fd07a51dd8588b5460bd8ee663</cites><orcidid>0000-0002-2512-5059 ; 0000-0002-6388-0661 ; 0000-0002-4242-3285 ; 0000-0001-5650-6949 ; 0000-0002-0251-6890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8591542/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8591542/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,41120,42189,45574,45575,46409,46833,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34617598$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Papagiannidis, Dimitrios</creatorcontrib><creatorcontrib>Bircham, Peter W</creatorcontrib><creatorcontrib>Lüchtenborg, Christian</creatorcontrib><creatorcontrib>Pajonk, Oliver</creatorcontrib><creatorcontrib>Ruffini, Giulia</creatorcontrib><creatorcontrib>Brügger, Britta</creatorcontrib><creatorcontrib>Schuck, Sebastian</creatorcontrib><title>Ice2 promotes ER membrane biogenesis in yeast by inhibiting the conserved lipin phosphatase complex</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Cells dynamically adapt organelle size to current physiological demand. Organelle growth requires membrane biogenesis and therefore needs to be coordinated with lipid metabolism. The endoplasmic reticulum (ER) can undergo massive expansion, but the underlying regulatory mechanisms are largely unclear. Here, we describe a genetic screen for factors involved in ER membrane expansion in budding yeast and identify the ER transmembrane protein Ice2 as a strong hit. We show that Ice2 promotes ER membrane biogenesis by opposing the phosphatidic acid phosphatase Pah1, called lipin in metazoa. Specifically, Ice2 inhibits the conserved Nem1‐Spo7 complex and thus suppresses the dephosphorylation and activation of Pah1. Furthermore, Ice2 cooperates with the transcriptional regulation of lipid synthesis genes and helps to maintain cell homeostasis during ER stress. These findings establish the control of the lipin phosphatase complex as an important mechanism for regulating ER membrane biogenesis. Synopsis Organelle biogenesis typically requires synthesis of new membrane and thus depends on lipid metabolism. A genetic screen identifies the ER protein Ice2 as a regulator of lipid metabolism and a major factor for ER membrane biogenesis. Ice2 regulates lipid metabolism and promotes ER membrane biogenesis through inhibition of the phosphatidic acid phosphatase Pah1/lipin Ice2 opposes Pah1 activation by interacting with and restraining the Nem1‐Spo7 phosphatase complex Ice2 cooperates with the transcriptional regulators of lipid metabolism Opi1‐Ino2/4 to control ER membrane biogenesis Ice2 regulation of lipid metabolism helps to maintain ER homeostasis and supports cell growth, particularly during ER stress Graphical Abstract A screen for factors involved in ER membrane expansion identifies a role for ER transmembrane protein Ice2 via inhibition of the Nem1‐Spo7/Pah1‐lipin phosphatase cascade.</description><subject>Acid phosphatase</subject><subject>Biosynthesis</subject><subject>Cell size</subject><subject>Dephosphorylation</subject><subject>EMBO20</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - genetics</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Endoplasmic Reticulum Stress</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Gene regulation</subject><subject>Genetic screening</subject><subject>Homeostasis</subject><subject>Intracellular Membranes - metabolism</subject><subject>lipid droplets</subject><subject>Lipid Metabolism</subject><subject>Lipids</subject><subject>lipin</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Membranes</subject><subject>Metabolism</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Opi1</subject><subject>organelle biogenesis</subject><subject>Organic Chemicals - metabolism</subject><subject>Phosphatase</subject><subject>Phosphatidate Phosphatase - genetics</subject><subject>Phosphatidate Phosphatase - metabolism</subject><subject>Phosphatidic acid</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Regulatory mechanisms (biology)</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Synthesis</subject><subject>Transcription</subject><subject>Unfolded Protein Response</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS0EosvCnROyxIVLiseJE0dCSKVa2qJWSAjOlu1MNl4lcbCzhf33eNnS0kqIky3Pe9_M-BHyEtgxCC74WxzM5pgzDsCqWshHZAFFyTLOKvGYLBgvIStA1kfkWYwbxpiQFTwlR3lRQiVquSD2wiKnU_CDnzHS1Rc6JGbQI1Lj_BpHjC5SN9Id6jhTs0v3zhk3u3FN5w6p9WPEcI0N7d2UdFPn49TpWcd9bZh6_PmcPGl1H_HFzbkk3z6uvp6eZ5efzy5OTy4zK6CWGeeyyQ03rcQ2FzmrK-Dc1qClRdRlY0RRAEDbsEoLaBoppExvJTONRCzLfEneH7jT1gzYWBznoHs1BTfosFNeO3W_MrpOrf21kqIGUfAEeHMDCP77FuOsBhct9n36Dr-NigvJGMhK7nu9fiDd-G0Y03pJVVdF4qUdloQdVDb4GAO2t8MAU78TVPsE1V2CyfLq7yVuDX8iS4J3B8EP1-Puv0C1uvrw6R4fDvaYnOMaw93g_5zpFwCWuhM</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Papagiannidis, Dimitrios</creator><creator>Bircham, Peter W</creator><creator>Lüchtenborg, Christian</creator><creator>Pajonk, Oliver</creator><creator>Ruffini, Giulia</creator><creator>Brügger, Britta</creator><creator>Schuck, Sebastian</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2512-5059</orcidid><orcidid>https://orcid.org/0000-0002-6388-0661</orcidid><orcidid>https://orcid.org/0000-0002-4242-3285</orcidid><orcidid>https://orcid.org/0000-0001-5650-6949</orcidid><orcidid>https://orcid.org/0000-0002-0251-6890</orcidid></search><sort><creationdate>20211115</creationdate><title>Ice2 promotes ER membrane biogenesis in yeast by inhibiting the conserved lipin phosphatase complex</title><author>Papagiannidis, Dimitrios ; Bircham, Peter W ; Lüchtenborg, Christian ; Pajonk, Oliver ; Ruffini, Giulia ; Brügger, Britta ; Schuck, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5198-228d3b2bf8ef353097122c91a8ceea6db544111fd07a51dd8588b5460bd8ee663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acid phosphatase</topic><topic>Biosynthesis</topic><topic>Cell size</topic><topic>Dephosphorylation</topic><topic>EMBO20</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - genetics</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Endoplasmic Reticulum Stress</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Gene regulation</topic><topic>Genetic screening</topic><topic>Homeostasis</topic><topic>Intracellular Membranes - metabolism</topic><topic>lipid droplets</topic><topic>Lipid Metabolism</topic><topic>Lipids</topic><topic>lipin</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Membranes</topic><topic>Metabolism</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Opi1</topic><topic>organelle biogenesis</topic><topic>Organic Chemicals - metabolism</topic><topic>Phosphatase</topic><topic>Phosphatidate Phosphatase - genetics</topic><topic>Phosphatidate Phosphatase - metabolism</topic><topic>Phosphatidic acid</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Regulatory mechanisms (biology)</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Synthesis</topic><topic>Transcription</topic><topic>Unfolded Protein Response</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papagiannidis, Dimitrios</creatorcontrib><creatorcontrib>Bircham, Peter W</creatorcontrib><creatorcontrib>Lüchtenborg, Christian</creatorcontrib><creatorcontrib>Pajonk, Oliver</creatorcontrib><creatorcontrib>Ruffini, Giulia</creatorcontrib><creatorcontrib>Brügger, Britta</creatorcontrib><creatorcontrib>Schuck, Sebastian</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papagiannidis, Dimitrios</au><au>Bircham, Peter W</au><au>Lüchtenborg, Christian</au><au>Pajonk, Oliver</au><au>Ruffini, Giulia</au><au>Brügger, Britta</au><au>Schuck, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ice2 promotes ER membrane biogenesis in yeast by inhibiting the conserved lipin phosphatase complex</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2021-11-15</date><risdate>2021</risdate><volume>40</volume><issue>22</issue><spage>e107958</spage><epage>n/a</epage><pages>e107958-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>Cells dynamically adapt organelle size to current physiological demand. Organelle growth requires membrane biogenesis and therefore needs to be coordinated with lipid metabolism. The endoplasmic reticulum (ER) can undergo massive expansion, but the underlying regulatory mechanisms are largely unclear. Here, we describe a genetic screen for factors involved in ER membrane expansion in budding yeast and identify the ER transmembrane protein Ice2 as a strong hit. We show that Ice2 promotes ER membrane biogenesis by opposing the phosphatidic acid phosphatase Pah1, called lipin in metazoa. Specifically, Ice2 inhibits the conserved Nem1‐Spo7 complex and thus suppresses the dephosphorylation and activation of Pah1. Furthermore, Ice2 cooperates with the transcriptional regulation of lipid synthesis genes and helps to maintain cell homeostasis during ER stress. These findings establish the control of the lipin phosphatase complex as an important mechanism for regulating ER membrane biogenesis. Synopsis Organelle biogenesis typically requires synthesis of new membrane and thus depends on lipid metabolism. A genetic screen identifies the ER protein Ice2 as a regulator of lipid metabolism and a major factor for ER membrane biogenesis. Ice2 regulates lipid metabolism and promotes ER membrane biogenesis through inhibition of the phosphatidic acid phosphatase Pah1/lipin Ice2 opposes Pah1 activation by interacting with and restraining the Nem1‐Spo7 phosphatase complex Ice2 cooperates with the transcriptional regulators of lipid metabolism Opi1‐Ino2/4 to control ER membrane biogenesis Ice2 regulation of lipid metabolism helps to maintain ER homeostasis and supports cell growth, particularly during ER stress Graphical Abstract A screen for factors involved in ER membrane expansion identifies a role for ER transmembrane protein Ice2 via inhibition of the Nem1‐Spo7/Pah1‐lipin phosphatase cascade.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34617598</pmid><doi>10.15252/embj.2021107958</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-2512-5059</orcidid><orcidid>https://orcid.org/0000-0002-6388-0661</orcidid><orcidid>https://orcid.org/0000-0002-4242-3285</orcidid><orcidid>https://orcid.org/0000-0001-5650-6949</orcidid><orcidid>https://orcid.org/0000-0002-0251-6890</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2021-11, Vol.40 (22), p.e107958-n/a
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8591542
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Access via Wiley Online Library; Wiley Online Library (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry
subjects Acid phosphatase
Biosynthesis
Cell size
Dephosphorylation
EMBO20
Endoplasmic reticulum
Endoplasmic Reticulum - genetics
Endoplasmic Reticulum - metabolism
Endoplasmic Reticulum Stress
Gene Expression Regulation, Fungal
Gene regulation
Genetic screening
Homeostasis
Intracellular Membranes - metabolism
lipid droplets
Lipid Metabolism
Lipids
lipin
Membrane Proteins - genetics
Membrane Proteins - metabolism
Membranes
Metabolism
Multiprotein Complexes - metabolism
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Opi1
organelle biogenesis
Organic Chemicals - metabolism
Phosphatase
Phosphatidate Phosphatase - genetics
Phosphatidate Phosphatase - metabolism
Phosphatidic acid
Phosphorylation
Proteins
Regulatory mechanisms (biology)
Repressor Proteins - genetics
Repressor Proteins - metabolism
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Synthesis
Transcription
Unfolded Protein Response
Yeast
Yeasts
title Ice2 promotes ER membrane biogenesis in yeast by inhibiting the conserved lipin phosphatase complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A52%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ice2%20promotes%20ER%20membrane%20biogenesis%20in%20yeast%20by%20inhibiting%20the%20conserved%20lipin%20phosphatase%20complex&rft.jtitle=The%20EMBO%20journal&rft.au=Papagiannidis,%20Dimitrios&rft.date=2021-11-15&rft.volume=40&rft.issue=22&rft.spage=e107958&rft.epage=n/a&rft.pages=e107958-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2021107958&rft_dat=%3Cproquest_pubme%3E2597415435%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2597415435&rft_id=info:pmid/34617598&rfr_iscdi=true