A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry
Microfluidic applications such as active particle sorting or selective enrichment require particle classification techniques that are capable of working in real time. In this paper, we explore the use of neural networks for fast label-free particle characterization during microfluidic impedance cyto...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2020-06, Vol.412 (16), p.3835-3845 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3845 |
---|---|
container_issue | 16 |
container_start_page | 3835 |
container_title | Analytical and bioanalytical chemistry |
container_volume | 412 |
creator | Honrado, Carlos McGrath, John S. Reale, Riccardo Bisegna, Paolo Swami, Nathan S. Caselli, Frederica |
description | Microfluidic applications such as active particle sorting or selective enrichment require particle classification techniques that are capable of working in real time. In this paper, we explore the use of neural networks for fast label-free particle characterization during microfluidic impedance cytometry. A recurrent neural network is designed to process data from a novel impedance chip layout for enabling real-time multiparametric analysis of the measured impedance data streams. As demonstrated with both synthetic and experimental datasets, the trained network is able to characterize with good accuracy size, velocity, and cross-sectional position of beads, red blood cells, and yeasts, with a unitary prediction time of 0.4 ms. The proposed approach can be extended to other device designs and cell types for electrical parameter extraction. This combination of microfluidic impedance cytometry and machine learning can serve as a stepping stone to real-time single-cell analysis and sorting.
Graphical Abstract |
doi_str_mv | 10.1007/s00216-020-02497-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8590873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A624350781</galeid><sourcerecordid>A624350781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c616t-bea209ebd4537ea1ec9a6487739f4feea3e0a218763c99b56005c47a9efdcc9c3</originalsourceid><addsrcrecordid>eNp9UU1v1DAQjRCIlsIf4IAsceGSdvwRO74grSoKSJW4wNnyOpNdL4kd7KRo-fX1smX5OCDLGsvz5s28eVX1ksIlBVBXGYBRWQODcoVWtX5UnVNJ25rJBh6f3oKdVc9y3gHQpqXyaXXGGW01UHZe7VYk4JLsUML8PaavxE5TitZtSR8TSWiHevYjksmm2bsBrxwOA3Fbm6ybMfkfdvYxEB_I6F2K_bD4zjvixwk7GxwSt5_jiHPaP6-e9HbI-OIhXlRfbt59vv5Q3356__F6dVs7SeVcr9Ey0LjuRMMVWopOWylapbjuRY9oOYIt8yvJndbrRgI0Tiirse-c045fVG-PvNOyHrFzGOaiz0zJjzbtTbTe_J0Jfms28c60jYZW8ULw5oEgxW8L5tmMPh9k24BxyYZxpYG1QssCff0PdBeXFIo8wwQIJlrR6IK6PKI2dkDjQx9LX1dOh2VpMWDvy_9KMsEbUC0tBexYUDaac8L-ND0Fc_DeHL03xXvz03tz6PLqT92nkl9mFwA_AnJJhQ2m38P-h_Ye3-u8qg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404248459</pqid></control><display><type>article</type><title>A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Honrado, Carlos ; McGrath, John S. ; Reale, Riccardo ; Bisegna, Paolo ; Swami, Nathan S. ; Caselli, Frederica</creator><creatorcontrib>Honrado, Carlos ; McGrath, John S. ; Reale, Riccardo ; Bisegna, Paolo ; Swami, Nathan S. ; Caselli, Frederica</creatorcontrib><description>Microfluidic applications such as active particle sorting or selective enrichment require particle classification techniques that are capable of working in real time. In this paper, we explore the use of neural networks for fast label-free particle characterization during microfluidic impedance cytometry. A recurrent neural network is designed to process data from a novel impedance chip layout for enabling real-time multiparametric analysis of the measured impedance data streams. As demonstrated with both synthetic and experimental datasets, the trained network is able to characterize with good accuracy size, velocity, and cross-sectional position of beads, red blood cells, and yeasts, with a unitary prediction time of 0.4 ms. The proposed approach can be extended to other device designs and cell types for electrical parameter extraction. This combination of microfluidic impedance cytometry and machine learning can serve as a stepping stone to real-time single-cell analysis and sorting.
Graphical Abstract</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-020-02497-9</identifier><identifier>PMID: 32189012</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Analytical Chemistry ; Beads ; Bioanalytics and Higher Order Electrokinetics ; Biochemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Cytometry ; Data transmission ; Electric Impedance ; Electric properties ; Erythrocytes ; Erythrocytes - cytology ; Flow Cytometry - methods ; Food Science ; Humans ; Impedance ; Laboratory Medicine ; Learning algorithms ; Machine learning ; Microfluidic Analytical Techniques - methods ; Microfluidics ; Monitoring/Environmental Analysis ; Neural networks ; Neural Networks, Computer ; Paper in Forefront ; Particle sorting ; Real time ; Recurrent neural networks ; Yeasts</subject><ispartof>Analytical and bioanalytical chemistry, 2020-06, Vol.412 (16), p.3835-3845</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c616t-bea209ebd4537ea1ec9a6487739f4feea3e0a218763c99b56005c47a9efdcc9c3</citedby><cites>FETCH-LOGICAL-c616t-bea209ebd4537ea1ec9a6487739f4feea3e0a218763c99b56005c47a9efdcc9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-020-02497-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-020-02497-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32189012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Honrado, Carlos</creatorcontrib><creatorcontrib>McGrath, John S.</creatorcontrib><creatorcontrib>Reale, Riccardo</creatorcontrib><creatorcontrib>Bisegna, Paolo</creatorcontrib><creatorcontrib>Swami, Nathan S.</creatorcontrib><creatorcontrib>Caselli, Frederica</creatorcontrib><title>A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Microfluidic applications such as active particle sorting or selective enrichment require particle classification techniques that are capable of working in real time. In this paper, we explore the use of neural networks for fast label-free particle characterization during microfluidic impedance cytometry. A recurrent neural network is designed to process data from a novel impedance chip layout for enabling real-time multiparametric analysis of the measured impedance data streams. As demonstrated with both synthetic and experimental datasets, the trained network is able to characterize with good accuracy size, velocity, and cross-sectional position of beads, red blood cells, and yeasts, with a unitary prediction time of 0.4 ms. The proposed approach can be extended to other device designs and cell types for electrical parameter extraction. This combination of microfluidic impedance cytometry and machine learning can serve as a stepping stone to real-time single-cell analysis and sorting.
Graphical Abstract</description><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Beads</subject><subject>Bioanalytics and Higher Order Electrokinetics</subject><subject>Biochemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cytometry</subject><subject>Data transmission</subject><subject>Electric Impedance</subject><subject>Electric properties</subject><subject>Erythrocytes</subject><subject>Erythrocytes - cytology</subject><subject>Flow Cytometry - methods</subject><subject>Food Science</subject><subject>Humans</subject><subject>Impedance</subject><subject>Laboratory Medicine</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microfluidics</subject><subject>Monitoring/Environmental Analysis</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Paper in Forefront</subject><subject>Particle sorting</subject><subject>Real time</subject><subject>Recurrent neural networks</subject><subject>Yeasts</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UU1v1DAQjRCIlsIf4IAsceGSdvwRO74grSoKSJW4wNnyOpNdL4kd7KRo-fX1smX5OCDLGsvz5s28eVX1ksIlBVBXGYBRWQODcoVWtX5UnVNJ25rJBh6f3oKdVc9y3gHQpqXyaXXGGW01UHZe7VYk4JLsUML8PaavxE5TitZtSR8TSWiHevYjksmm2bsBrxwOA3Fbm6ybMfkfdvYxEB_I6F2K_bD4zjvixwk7GxwSt5_jiHPaP6-e9HbI-OIhXlRfbt59vv5Q3356__F6dVs7SeVcr9Ey0LjuRMMVWopOWylapbjuRY9oOYIt8yvJndbrRgI0Tiirse-c045fVG-PvNOyHrFzGOaiz0zJjzbtTbTe_J0Jfms28c60jYZW8ULw5oEgxW8L5tmMPh9k24BxyYZxpYG1QssCff0PdBeXFIo8wwQIJlrR6IK6PKI2dkDjQx9LX1dOh2VpMWDvy_9KMsEbUC0tBexYUDaac8L-ND0Fc_DeHL03xXvz03tz6PLqT92nkl9mFwA_AnJJhQ2m38P-h_Ye3-u8qg</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Honrado, Carlos</creator><creator>McGrath, John S.</creator><creator>Reale, Riccardo</creator><creator>Bisegna, Paolo</creator><creator>Swami, Nathan S.</creator><creator>Caselli, Frederica</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200601</creationdate><title>A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry</title><author>Honrado, Carlos ; McGrath, John S. ; Reale, Riccardo ; Bisegna, Paolo ; Swami, Nathan S. ; Caselli, Frederica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c616t-bea209ebd4537ea1ec9a6487739f4feea3e0a218763c99b56005c47a9efdcc9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Beads</topic><topic>Bioanalytics and Higher Order Electrokinetics</topic><topic>Biochemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cytometry</topic><topic>Data transmission</topic><topic>Electric Impedance</topic><topic>Electric properties</topic><topic>Erythrocytes</topic><topic>Erythrocytes - cytology</topic><topic>Flow Cytometry - methods</topic><topic>Food Science</topic><topic>Humans</topic><topic>Impedance</topic><topic>Laboratory Medicine</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microfluidics</topic><topic>Monitoring/Environmental Analysis</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Paper in Forefront</topic><topic>Particle sorting</topic><topic>Real time</topic><topic>Recurrent neural networks</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Honrado, Carlos</creatorcontrib><creatorcontrib>McGrath, John S.</creatorcontrib><creatorcontrib>Reale, Riccardo</creatorcontrib><creatorcontrib>Bisegna, Paolo</creatorcontrib><creatorcontrib>Swami, Nathan S.</creatorcontrib><creatorcontrib>Caselli, Frederica</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Honrado, Carlos</au><au>McGrath, John S.</au><au>Reale, Riccardo</au><au>Bisegna, Paolo</au><au>Swami, Nathan S.</au><au>Caselli, Frederica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>412</volume><issue>16</issue><spage>3835</spage><epage>3845</epage><pages>3835-3845</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>Microfluidic applications such as active particle sorting or selective enrichment require particle classification techniques that are capable of working in real time. In this paper, we explore the use of neural networks for fast label-free particle characterization during microfluidic impedance cytometry. A recurrent neural network is designed to process data from a novel impedance chip layout for enabling real-time multiparametric analysis of the measured impedance data streams. As demonstrated with both synthetic and experimental datasets, the trained network is able to characterize with good accuracy size, velocity, and cross-sectional position of beads, red blood cells, and yeasts, with a unitary prediction time of 0.4 ms. The proposed approach can be extended to other device designs and cell types for electrical parameter extraction. This combination of microfluidic impedance cytometry and machine learning can serve as a stepping stone to real-time single-cell analysis and sorting.
Graphical Abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32189012</pmid><doi>10.1007/s00216-020-02497-9</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2642 |
ispartof | Analytical and bioanalytical chemistry, 2020-06, Vol.412 (16), p.3835-3845 |
issn | 1618-2642 1618-2650 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8590873 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Analysis Analytical Chemistry Beads Bioanalytics and Higher Order Electrokinetics Biochemistry Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Cytometry Data transmission Electric Impedance Electric properties Erythrocytes Erythrocytes - cytology Flow Cytometry - methods Food Science Humans Impedance Laboratory Medicine Learning algorithms Machine learning Microfluidic Analytical Techniques - methods Microfluidics Monitoring/Environmental Analysis Neural networks Neural Networks, Computer Paper in Forefront Particle sorting Real time Recurrent neural networks Yeasts |
title | A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neural%20network%20approach%20for%20real-time%20particle/cell%20characterization%20in%20microfluidic%20impedance%20cytometry&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Honrado,%20Carlos&rft.date=2020-06-01&rft.volume=412&rft.issue=16&rft.spage=3835&rft.epage=3845&rft.pages=3835-3845&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-020-02497-9&rft_dat=%3Cgale_pubme%3EA624350781%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404248459&rft_id=info:pmid/32189012&rft_galeid=A624350781&rfr_iscdi=true |