A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry

Microfluidic applications such as active particle sorting or selective enrichment require particle classification techniques that are capable of working in real time. In this paper, we explore the use of neural networks for fast label-free particle characterization during microfluidic impedance cyto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2020-06, Vol.412 (16), p.3835-3845
Hauptverfasser: Honrado, Carlos, McGrath, John S., Reale, Riccardo, Bisegna, Paolo, Swami, Nathan S., Caselli, Frederica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3845
container_issue 16
container_start_page 3835
container_title Analytical and bioanalytical chemistry
container_volume 412
creator Honrado, Carlos
McGrath, John S.
Reale, Riccardo
Bisegna, Paolo
Swami, Nathan S.
Caselli, Frederica
description Microfluidic applications such as active particle sorting or selective enrichment require particle classification techniques that are capable of working in real time. In this paper, we explore the use of neural networks for fast label-free particle characterization during microfluidic impedance cytometry. A recurrent neural network is designed to process data from a novel impedance chip layout for enabling real-time multiparametric analysis of the measured impedance data streams. As demonstrated with both synthetic and experimental datasets, the trained network is able to characterize with good accuracy size, velocity, and cross-sectional position of beads, red blood cells, and yeasts, with a unitary prediction time of 0.4 ms. The proposed approach can be extended to other device designs and cell types for electrical parameter extraction. This combination of microfluidic impedance cytometry and machine learning can serve as a stepping stone to real-time single-cell analysis and sorting. Graphical Abstract
doi_str_mv 10.1007/s00216-020-02497-9
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8590873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A624350781</galeid><sourcerecordid>A624350781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c616t-bea209ebd4537ea1ec9a6487739f4feea3e0a218763c99b56005c47a9efdcc9c3</originalsourceid><addsrcrecordid>eNp9UU1v1DAQjRCIlsIf4IAsceGSdvwRO74grSoKSJW4wNnyOpNdL4kd7KRo-fX1smX5OCDLGsvz5s28eVX1ksIlBVBXGYBRWQODcoVWtX5UnVNJ25rJBh6f3oKdVc9y3gHQpqXyaXXGGW01UHZe7VYk4JLsUML8PaavxE5TitZtSR8TSWiHevYjksmm2bsBrxwOA3Fbm6ybMfkfdvYxEB_I6F2K_bD4zjvixwk7GxwSt5_jiHPaP6-e9HbI-OIhXlRfbt59vv5Q3356__F6dVs7SeVcr9Ey0LjuRMMVWopOWylapbjuRY9oOYIt8yvJndbrRgI0Tiirse-c045fVG-PvNOyHrFzGOaiz0zJjzbtTbTe_J0Jfms28c60jYZW8ULw5oEgxW8L5tmMPh9k24BxyYZxpYG1QssCff0PdBeXFIo8wwQIJlrR6IK6PKI2dkDjQx9LX1dOh2VpMWDvy_9KMsEbUC0tBexYUDaac8L-ND0Fc_DeHL03xXvz03tz6PLqT92nkl9mFwA_AnJJhQ2m38P-h_Ye3-u8qg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404248459</pqid></control><display><type>article</type><title>A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Honrado, Carlos ; McGrath, John S. ; Reale, Riccardo ; Bisegna, Paolo ; Swami, Nathan S. ; Caselli, Frederica</creator><creatorcontrib>Honrado, Carlos ; McGrath, John S. ; Reale, Riccardo ; Bisegna, Paolo ; Swami, Nathan S. ; Caselli, Frederica</creatorcontrib><description>Microfluidic applications such as active particle sorting or selective enrichment require particle classification techniques that are capable of working in real time. In this paper, we explore the use of neural networks for fast label-free particle characterization during microfluidic impedance cytometry. A recurrent neural network is designed to process data from a novel impedance chip layout for enabling real-time multiparametric analysis of the measured impedance data streams. As demonstrated with both synthetic and experimental datasets, the trained network is able to characterize with good accuracy size, velocity, and cross-sectional position of beads, red blood cells, and yeasts, with a unitary prediction time of 0.4 ms. The proposed approach can be extended to other device designs and cell types for electrical parameter extraction. This combination of microfluidic impedance cytometry and machine learning can serve as a stepping stone to real-time single-cell analysis and sorting. Graphical Abstract</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-020-02497-9</identifier><identifier>PMID: 32189012</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Analytical Chemistry ; Beads ; Bioanalytics and Higher Order Electrokinetics ; Biochemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Cytometry ; Data transmission ; Electric Impedance ; Electric properties ; Erythrocytes ; Erythrocytes - cytology ; Flow Cytometry - methods ; Food Science ; Humans ; Impedance ; Laboratory Medicine ; Learning algorithms ; Machine learning ; Microfluidic Analytical Techniques - methods ; Microfluidics ; Monitoring/Environmental Analysis ; Neural networks ; Neural Networks, Computer ; Paper in Forefront ; Particle sorting ; Real time ; Recurrent neural networks ; Yeasts</subject><ispartof>Analytical and bioanalytical chemistry, 2020-06, Vol.412 (16), p.3835-3845</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c616t-bea209ebd4537ea1ec9a6487739f4feea3e0a218763c99b56005c47a9efdcc9c3</citedby><cites>FETCH-LOGICAL-c616t-bea209ebd4537ea1ec9a6487739f4feea3e0a218763c99b56005c47a9efdcc9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-020-02497-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-020-02497-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32189012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Honrado, Carlos</creatorcontrib><creatorcontrib>McGrath, John S.</creatorcontrib><creatorcontrib>Reale, Riccardo</creatorcontrib><creatorcontrib>Bisegna, Paolo</creatorcontrib><creatorcontrib>Swami, Nathan S.</creatorcontrib><creatorcontrib>Caselli, Frederica</creatorcontrib><title>A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Microfluidic applications such as active particle sorting or selective enrichment require particle classification techniques that are capable of working in real time. In this paper, we explore the use of neural networks for fast label-free particle characterization during microfluidic impedance cytometry. A recurrent neural network is designed to process data from a novel impedance chip layout for enabling real-time multiparametric analysis of the measured impedance data streams. As demonstrated with both synthetic and experimental datasets, the trained network is able to characterize with good accuracy size, velocity, and cross-sectional position of beads, red blood cells, and yeasts, with a unitary prediction time of 0.4 ms. The proposed approach can be extended to other device designs and cell types for electrical parameter extraction. This combination of microfluidic impedance cytometry and machine learning can serve as a stepping stone to real-time single-cell analysis and sorting. Graphical Abstract</description><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Beads</subject><subject>Bioanalytics and Higher Order Electrokinetics</subject><subject>Biochemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cytometry</subject><subject>Data transmission</subject><subject>Electric Impedance</subject><subject>Electric properties</subject><subject>Erythrocytes</subject><subject>Erythrocytes - cytology</subject><subject>Flow Cytometry - methods</subject><subject>Food Science</subject><subject>Humans</subject><subject>Impedance</subject><subject>Laboratory Medicine</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microfluidics</subject><subject>Monitoring/Environmental Analysis</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Paper in Forefront</subject><subject>Particle sorting</subject><subject>Real time</subject><subject>Recurrent neural networks</subject><subject>Yeasts</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UU1v1DAQjRCIlsIf4IAsceGSdvwRO74grSoKSJW4wNnyOpNdL4kd7KRo-fX1smX5OCDLGsvz5s28eVX1ksIlBVBXGYBRWQODcoVWtX5UnVNJ25rJBh6f3oKdVc9y3gHQpqXyaXXGGW01UHZe7VYk4JLsUML8PaavxE5TitZtSR8TSWiHevYjksmm2bsBrxwOA3Fbm6ybMfkfdvYxEB_I6F2K_bD4zjvixwk7GxwSt5_jiHPaP6-e9HbI-OIhXlRfbt59vv5Q3356__F6dVs7SeVcr9Ey0LjuRMMVWopOWylapbjuRY9oOYIt8yvJndbrRgI0Tiirse-c045fVG-PvNOyHrFzGOaiz0zJjzbtTbTe_J0Jfms28c60jYZW8ULw5oEgxW8L5tmMPh9k24BxyYZxpYG1QssCff0PdBeXFIo8wwQIJlrR6IK6PKI2dkDjQx9LX1dOh2VpMWDvy_9KMsEbUC0tBexYUDaac8L-ND0Fc_DeHL03xXvz03tz6PLqT92nkl9mFwA_AnJJhQ2m38P-h_Ye3-u8qg</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Honrado, Carlos</creator><creator>McGrath, John S.</creator><creator>Reale, Riccardo</creator><creator>Bisegna, Paolo</creator><creator>Swami, Nathan S.</creator><creator>Caselli, Frederica</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200601</creationdate><title>A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry</title><author>Honrado, Carlos ; McGrath, John S. ; Reale, Riccardo ; Bisegna, Paolo ; Swami, Nathan S. ; Caselli, Frederica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c616t-bea209ebd4537ea1ec9a6487739f4feea3e0a218763c99b56005c47a9efdcc9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Beads</topic><topic>Bioanalytics and Higher Order Electrokinetics</topic><topic>Biochemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cytometry</topic><topic>Data transmission</topic><topic>Electric Impedance</topic><topic>Electric properties</topic><topic>Erythrocytes</topic><topic>Erythrocytes - cytology</topic><topic>Flow Cytometry - methods</topic><topic>Food Science</topic><topic>Humans</topic><topic>Impedance</topic><topic>Laboratory Medicine</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microfluidics</topic><topic>Monitoring/Environmental Analysis</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Paper in Forefront</topic><topic>Particle sorting</topic><topic>Real time</topic><topic>Recurrent neural networks</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Honrado, Carlos</creatorcontrib><creatorcontrib>McGrath, John S.</creatorcontrib><creatorcontrib>Reale, Riccardo</creatorcontrib><creatorcontrib>Bisegna, Paolo</creatorcontrib><creatorcontrib>Swami, Nathan S.</creatorcontrib><creatorcontrib>Caselli, Frederica</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Honrado, Carlos</au><au>McGrath, John S.</au><au>Reale, Riccardo</au><au>Bisegna, Paolo</au><au>Swami, Nathan S.</au><au>Caselli, Frederica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>412</volume><issue>16</issue><spage>3835</spage><epage>3845</epage><pages>3835-3845</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>Microfluidic applications such as active particle sorting or selective enrichment require particle classification techniques that are capable of working in real time. In this paper, we explore the use of neural networks for fast label-free particle characterization during microfluidic impedance cytometry. A recurrent neural network is designed to process data from a novel impedance chip layout for enabling real-time multiparametric analysis of the measured impedance data streams. As demonstrated with both synthetic and experimental datasets, the trained network is able to characterize with good accuracy size, velocity, and cross-sectional position of beads, red blood cells, and yeasts, with a unitary prediction time of 0.4 ms. The proposed approach can be extended to other device designs and cell types for electrical parameter extraction. This combination of microfluidic impedance cytometry and machine learning can serve as a stepping stone to real-time single-cell analysis and sorting. Graphical Abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32189012</pmid><doi>10.1007/s00216-020-02497-9</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1618-2642
ispartof Analytical and bioanalytical chemistry, 2020-06, Vol.412 (16), p.3835-3845
issn 1618-2642
1618-2650
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8590873
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Analysis
Analytical Chemistry
Beads
Bioanalytics and Higher Order Electrokinetics
Biochemistry
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Cytometry
Data transmission
Electric Impedance
Electric properties
Erythrocytes
Erythrocytes - cytology
Flow Cytometry - methods
Food Science
Humans
Impedance
Laboratory Medicine
Learning algorithms
Machine learning
Microfluidic Analytical Techniques - methods
Microfluidics
Monitoring/Environmental Analysis
Neural networks
Neural Networks, Computer
Paper in Forefront
Particle sorting
Real time
Recurrent neural networks
Yeasts
title A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neural%20network%20approach%20for%20real-time%20particle/cell%20characterization%20in%20microfluidic%20impedance%20cytometry&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Honrado,%20Carlos&rft.date=2020-06-01&rft.volume=412&rft.issue=16&rft.spage=3835&rft.epage=3845&rft.pages=3835-3845&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-020-02497-9&rft_dat=%3Cgale_pubme%3EA624350781%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404248459&rft_id=info:pmid/32189012&rft_galeid=A624350781&rfr_iscdi=true