Persister cells: formation, resuscitation and combative therapies

Persister cells, or superfits, have been strongly implicated in the recalcitrance and recurrence of chronic bacterial infection through the dormant (metabolically reduced) phenotype they display and the tolerance to antimicrobial agents this dormancy grants them. The complex biochemical events that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of microbiology 2021-12, Vol.203 (10), p.5899-5906
Hauptverfasser: Wainwright, Jack, Hobbs, Glyn, Nakouti, Ismini
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5906
container_issue 10
container_start_page 5899
container_title Archives of microbiology
container_volume 203
creator Wainwright, Jack
Hobbs, Glyn
Nakouti, Ismini
description Persister cells, or superfits, have been strongly implicated in the recalcitrance and recurrence of chronic bacterial infection through the dormant (metabolically reduced) phenotype they display and the tolerance to antimicrobial agents this dormancy grants them. The complex biochemical events that lead to the formation of persister cells are not completely understood, though much research has linked the degradation of type II toxin/antitoxin systems and reduced cellular ATP levels to the rise in stress response molecules (where (p)ppGpp is of particular interest), which induce this dormant state. The equally complex mechanism of resuscitation is initiated by the cells’ ability to sense nutrient availability via chemotaxis systems. Levels of secondary messenger proteins (i.e., cAMP) within the cell are reduced to allow the resuscitation of ribosomes, by ribosomal resuscitation factor HflX, to reinstate protein synthesis and, therefore, growth to re-populate. Techniques of superfit eradication utilise one, or more, of three approaches (i) direct killing, (ii) re-sensitising persister cells to conventional antimicrobials, or (iii) prevention of persister formation though few laboratory findings have been translated to clinical practice. This work will outline current findings in the field with a critical approach, where possible.
doi_str_mv 10.1007/s00203-021-02585-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8590677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597012710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-2f3bb2d2f7f254a16d2b5529baeef54e246a348cd72aa377de0181dc1d9452dd3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7vrxBzxIwavVyaTZtB6ERfyCBT0oeAtpM9VKt12TVtBfb9zqqhcPwzDMO-87PIztcTjiAOrYAyCIGJCHkqmM39fYmCcCY1D4sM7GIADjNBNixLa8fwbgmKbpJhuJRIlMSjFm01tyvvIduaiguvYnUdm6uemqtjmMHPneF1W3HCPT2Kho53mYXinqnsiZRUV-h22Upva0-9W32f3F-d3ZVTy7ubw-m87iQibQxViKPEeLpSpRJoZPLOZSYpYbolImhMnEiCQtrEJjhFKWgKfcFtxmiURrxTY7HXwXfT4nW1DTOVPrhavmxr3p1lT676apnvRj-6pTmcFEqWBw8GXg2peefKef29414WeNMlMBjuIQVDioCtd676hcJXDQn9j1gF0H7HqJXb-Ho_3fv61OvjkHgRgEPqyaR3I_2f_YfgC-sZAR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597012710</pqid></control><display><type>article</type><title>Persister cells: formation, resuscitation and combative therapies</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Wainwright, Jack ; Hobbs, Glyn ; Nakouti, Ismini</creator><creatorcontrib>Wainwright, Jack ; Hobbs, Glyn ; Nakouti, Ismini</creatorcontrib><description>Persister cells, or superfits, have been strongly implicated in the recalcitrance and recurrence of chronic bacterial infection through the dormant (metabolically reduced) phenotype they display and the tolerance to antimicrobial agents this dormancy grants them. The complex biochemical events that lead to the formation of persister cells are not completely understood, though much research has linked the degradation of type II toxin/antitoxin systems and reduced cellular ATP levels to the rise in stress response molecules (where (p)ppGpp is of particular interest), which induce this dormant state. The equally complex mechanism of resuscitation is initiated by the cells’ ability to sense nutrient availability via chemotaxis systems. Levels of secondary messenger proteins (i.e., cAMP) within the cell are reduced to allow the resuscitation of ribosomes, by ribosomal resuscitation factor HflX, to reinstate protein synthesis and, therefore, growth to re-populate. Techniques of superfit eradication utilise one, or more, of three approaches (i) direct killing, (ii) re-sensitising persister cells to conventional antimicrobials, or (iii) prevention of persister formation though few laboratory findings have been translated to clinical practice. This work will outline current findings in the field with a critical approach, where possible.</description><identifier>ISSN: 0302-8933</identifier><identifier>EISSN: 1432-072X</identifier><identifier>DOI: 10.1007/s00203-021-02585-z</identifier><identifier>PMID: 34739553</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anti-Bacterial Agents - pharmacology ; Antibiotics ; Antiinfectives and antibacterials ; Antimicrobial agents ; Antitoxins ; Archives &amp; records ; Bacteria ; Bacteria - metabolism ; Bacterial diseases ; Bacterial infections ; Bacterial Infections - drug therapy ; Bacterial Infections - microbiology ; Biochemistry ; Biodegradation ; Biofilms ; Biomedical and Life Sciences ; Biotechnology ; Cell Biology ; Cellular stress response ; Chemotaxis ; Chronic infection ; Dormancy ; E coli ; Ecology ; Escherichia coli - metabolism ; Escherichia coli Proteins - metabolism ; Genes ; GTP-Binding Proteins ; Humans ; Infections ; Life Sciences ; Metabolism ; Microbial Ecology ; Microbiology ; Mini-Review ; Nutrient availability ; Persistent Infection - drug therapy ; Persistent Infection - microbiology ; Phenotypes ; Population ; Protein biosynthesis ; Protein synthesis ; Proteins ; Resuscitation ; Ribosomes ; Toxins</subject><ispartof>Archives of microbiology, 2021-12, Vol.203 (10), p.5899-5906</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-2f3bb2d2f7f254a16d2b5529baeef54e246a348cd72aa377de0181dc1d9452dd3</citedby><cites>FETCH-LOGICAL-c540t-2f3bb2d2f7f254a16d2b5529baeef54e246a348cd72aa377de0181dc1d9452dd3</cites><orcidid>0000-0001-9438-6300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00203-021-02585-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00203-021-02585-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34739553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wainwright, Jack</creatorcontrib><creatorcontrib>Hobbs, Glyn</creatorcontrib><creatorcontrib>Nakouti, Ismini</creatorcontrib><title>Persister cells: formation, resuscitation and combative therapies</title><title>Archives of microbiology</title><addtitle>Arch Microbiol</addtitle><addtitle>Arch Microbiol</addtitle><description>Persister cells, or superfits, have been strongly implicated in the recalcitrance and recurrence of chronic bacterial infection through the dormant (metabolically reduced) phenotype they display and the tolerance to antimicrobial agents this dormancy grants them. The complex biochemical events that lead to the formation of persister cells are not completely understood, though much research has linked the degradation of type II toxin/antitoxin systems and reduced cellular ATP levels to the rise in stress response molecules (where (p)ppGpp is of particular interest), which induce this dormant state. The equally complex mechanism of resuscitation is initiated by the cells’ ability to sense nutrient availability via chemotaxis systems. Levels of secondary messenger proteins (i.e., cAMP) within the cell are reduced to allow the resuscitation of ribosomes, by ribosomal resuscitation factor HflX, to reinstate protein synthesis and, therefore, growth to re-populate. Techniques of superfit eradication utilise one, or more, of three approaches (i) direct killing, (ii) re-sensitising persister cells to conventional antimicrobials, or (iii) prevention of persister formation though few laboratory findings have been translated to clinical practice. This work will outline current findings in the field with a critical approach, where possible.</description><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial agents</subject><subject>Antitoxins</subject><subject>Archives &amp; records</subject><subject>Bacteria</subject><subject>Bacteria - metabolism</subject><subject>Bacterial diseases</subject><subject>Bacterial infections</subject><subject>Bacterial Infections - drug therapy</subject><subject>Bacterial Infections - microbiology</subject><subject>Biochemistry</subject><subject>Biodegradation</subject><subject>Biofilms</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Cellular stress response</subject><subject>Chemotaxis</subject><subject>Chronic infection</subject><subject>Dormancy</subject><subject>E coli</subject><subject>Ecology</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Genes</subject><subject>GTP-Binding Proteins</subject><subject>Humans</subject><subject>Infections</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Mini-Review</subject><subject>Nutrient availability</subject><subject>Persistent Infection - drug therapy</subject><subject>Persistent Infection - microbiology</subject><subject>Phenotypes</subject><subject>Population</subject><subject>Protein biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Resuscitation</subject><subject>Ribosomes</subject><subject>Toxins</subject><issn>0302-8933</issn><issn>1432-072X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LxDAQhoMo7vrxBzxIwavVyaTZtB6ERfyCBT0oeAtpM9VKt12TVtBfb9zqqhcPwzDMO-87PIztcTjiAOrYAyCIGJCHkqmM39fYmCcCY1D4sM7GIADjNBNixLa8fwbgmKbpJhuJRIlMSjFm01tyvvIduaiguvYnUdm6uemqtjmMHPneF1W3HCPT2Kho53mYXinqnsiZRUV-h22Upva0-9W32f3F-d3ZVTy7ubw-m87iQibQxViKPEeLpSpRJoZPLOZSYpYbolImhMnEiCQtrEJjhFKWgKfcFtxmiURrxTY7HXwXfT4nW1DTOVPrhavmxr3p1lT676apnvRj-6pTmcFEqWBw8GXg2peefKef29414WeNMlMBjuIQVDioCtd676hcJXDQn9j1gF0H7HqJXb-Ho_3fv61OvjkHgRgEPqyaR3I_2f_YfgC-sZAR</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Wainwright, Jack</creator><creator>Hobbs, Glyn</creator><creator>Nakouti, Ismini</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9438-6300</orcidid></search><sort><creationdate>20211201</creationdate><title>Persister cells: formation, resuscitation and combative therapies</title><author>Wainwright, Jack ; Hobbs, Glyn ; Nakouti, Ismini</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-2f3bb2d2f7f254a16d2b5529baeef54e246a348cd72aa377de0181dc1d9452dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial agents</topic><topic>Antitoxins</topic><topic>Archives &amp; records</topic><topic>Bacteria</topic><topic>Bacteria - metabolism</topic><topic>Bacterial diseases</topic><topic>Bacterial infections</topic><topic>Bacterial Infections - drug therapy</topic><topic>Bacterial Infections - microbiology</topic><topic>Biochemistry</topic><topic>Biodegradation</topic><topic>Biofilms</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Cellular stress response</topic><topic>Chemotaxis</topic><topic>Chronic infection</topic><topic>Dormancy</topic><topic>E coli</topic><topic>Ecology</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Genes</topic><topic>GTP-Binding Proteins</topic><topic>Humans</topic><topic>Infections</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Mini-Review</topic><topic>Nutrient availability</topic><topic>Persistent Infection - drug therapy</topic><topic>Persistent Infection - microbiology</topic><topic>Phenotypes</topic><topic>Population</topic><topic>Protein biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Resuscitation</topic><topic>Ribosomes</topic><topic>Toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wainwright, Jack</creatorcontrib><creatorcontrib>Hobbs, Glyn</creatorcontrib><creatorcontrib>Nakouti, Ismini</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Archives of microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wainwright, Jack</au><au>Hobbs, Glyn</au><au>Nakouti, Ismini</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Persister cells: formation, resuscitation and combative therapies</atitle><jtitle>Archives of microbiology</jtitle><stitle>Arch Microbiol</stitle><addtitle>Arch Microbiol</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>203</volume><issue>10</issue><spage>5899</spage><epage>5906</epage><pages>5899-5906</pages><issn>0302-8933</issn><eissn>1432-072X</eissn><abstract>Persister cells, or superfits, have been strongly implicated in the recalcitrance and recurrence of chronic bacterial infection through the dormant (metabolically reduced) phenotype they display and the tolerance to antimicrobial agents this dormancy grants them. The complex biochemical events that lead to the formation of persister cells are not completely understood, though much research has linked the degradation of type II toxin/antitoxin systems and reduced cellular ATP levels to the rise in stress response molecules (where (p)ppGpp is of particular interest), which induce this dormant state. The equally complex mechanism of resuscitation is initiated by the cells’ ability to sense nutrient availability via chemotaxis systems. Levels of secondary messenger proteins (i.e., cAMP) within the cell are reduced to allow the resuscitation of ribosomes, by ribosomal resuscitation factor HflX, to reinstate protein synthesis and, therefore, growth to re-populate. Techniques of superfit eradication utilise one, or more, of three approaches (i) direct killing, (ii) re-sensitising persister cells to conventional antimicrobials, or (iii) prevention of persister formation though few laboratory findings have been translated to clinical practice. This work will outline current findings in the field with a critical approach, where possible.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34739553</pmid><doi>10.1007/s00203-021-02585-z</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9438-6300</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-8933
ispartof Archives of microbiology, 2021-12, Vol.203 (10), p.5899-5906
issn 0302-8933
1432-072X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8590677
source MEDLINE; SpringerLink Journals
subjects Anti-Bacterial Agents - pharmacology
Antibiotics
Antiinfectives and antibacterials
Antimicrobial agents
Antitoxins
Archives & records
Bacteria
Bacteria - metabolism
Bacterial diseases
Bacterial infections
Bacterial Infections - drug therapy
Bacterial Infections - microbiology
Biochemistry
Biodegradation
Biofilms
Biomedical and Life Sciences
Biotechnology
Cell Biology
Cellular stress response
Chemotaxis
Chronic infection
Dormancy
E coli
Ecology
Escherichia coli - metabolism
Escherichia coli Proteins - metabolism
Genes
GTP-Binding Proteins
Humans
Infections
Life Sciences
Metabolism
Microbial Ecology
Microbiology
Mini-Review
Nutrient availability
Persistent Infection - drug therapy
Persistent Infection - microbiology
Phenotypes
Population
Protein biosynthesis
Protein synthesis
Proteins
Resuscitation
Ribosomes
Toxins
title Persister cells: formation, resuscitation and combative therapies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Persister%20cells:%20formation,%20resuscitation%20and%20combative%20therapies&rft.jtitle=Archives%20of%20microbiology&rft.au=Wainwright,%20Jack&rft.date=2021-12-01&rft.volume=203&rft.issue=10&rft.spage=5899&rft.epage=5906&rft.pages=5899-5906&rft.issn=0302-8933&rft.eissn=1432-072X&rft_id=info:doi/10.1007/s00203-021-02585-z&rft_dat=%3Cproquest_pubme%3E2597012710%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2597012710&rft_id=info:pmid/34739553&rfr_iscdi=true