Persister cells: formation, resuscitation and combative therapies
Persister cells, or superfits, have been strongly implicated in the recalcitrance and recurrence of chronic bacterial infection through the dormant (metabolically reduced) phenotype they display and the tolerance to antimicrobial agents this dormancy grants them. The complex biochemical events that...
Gespeichert in:
Veröffentlicht in: | Archives of microbiology 2021-12, Vol.203 (10), p.5899-5906 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5906 |
---|---|
container_issue | 10 |
container_start_page | 5899 |
container_title | Archives of microbiology |
container_volume | 203 |
creator | Wainwright, Jack Hobbs, Glyn Nakouti, Ismini |
description | Persister cells, or superfits, have been strongly implicated in the recalcitrance and recurrence of chronic bacterial infection through the dormant (metabolically reduced) phenotype they display and the tolerance to antimicrobial agents this dormancy grants them. The complex biochemical events that lead to the formation of persister cells are not completely understood, though much research has linked the degradation of type II toxin/antitoxin systems and reduced cellular ATP levels to the rise in stress response molecules (where (p)ppGpp is of particular interest), which induce this dormant state. The equally complex mechanism of resuscitation is initiated by the cells’ ability to sense nutrient availability via chemotaxis systems. Levels of secondary messenger proteins (i.e., cAMP) within the cell are reduced to allow the resuscitation of ribosomes, by ribosomal resuscitation factor HflX, to reinstate protein synthesis and, therefore, growth to re-populate. Techniques of superfit eradication utilise one, or more, of three approaches (i) direct killing, (ii) re-sensitising persister cells to conventional antimicrobials, or (iii) prevention of persister formation though few laboratory findings have been translated to clinical practice. This work will outline current findings in the field with a critical approach, where possible. |
doi_str_mv | 10.1007/s00203-021-02585-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8590677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597012710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-2f3bb2d2f7f254a16d2b5529baeef54e246a348cd72aa377de0181dc1d9452dd3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7vrxBzxIwavVyaTZtB6ERfyCBT0oeAtpM9VKt12TVtBfb9zqqhcPwzDMO-87PIztcTjiAOrYAyCIGJCHkqmM39fYmCcCY1D4sM7GIADjNBNixLa8fwbgmKbpJhuJRIlMSjFm01tyvvIduaiguvYnUdm6uemqtjmMHPneF1W3HCPT2Kho53mYXinqnsiZRUV-h22Upva0-9W32f3F-d3ZVTy7ubw-m87iQibQxViKPEeLpSpRJoZPLOZSYpYbolImhMnEiCQtrEJjhFKWgKfcFtxmiURrxTY7HXwXfT4nW1DTOVPrhavmxr3p1lT676apnvRj-6pTmcFEqWBw8GXg2peefKef29414WeNMlMBjuIQVDioCtd676hcJXDQn9j1gF0H7HqJXb-Ho_3fv61OvjkHgRgEPqyaR3I_2f_YfgC-sZAR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597012710</pqid></control><display><type>article</type><title>Persister cells: formation, resuscitation and combative therapies</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Wainwright, Jack ; Hobbs, Glyn ; Nakouti, Ismini</creator><creatorcontrib>Wainwright, Jack ; Hobbs, Glyn ; Nakouti, Ismini</creatorcontrib><description>Persister cells, or superfits, have been strongly implicated in the recalcitrance and recurrence of chronic bacterial infection through the dormant (metabolically reduced) phenotype they display and the tolerance to antimicrobial agents this dormancy grants them. The complex biochemical events that lead to the formation of persister cells are not completely understood, though much research has linked the degradation of type II toxin/antitoxin systems and reduced cellular ATP levels to the rise in stress response molecules (where (p)ppGpp is of particular interest), which induce this dormant state. The equally complex mechanism of resuscitation is initiated by the cells’ ability to sense nutrient availability via chemotaxis systems. Levels of secondary messenger proteins (i.e., cAMP) within the cell are reduced to allow the resuscitation of ribosomes, by ribosomal resuscitation factor HflX, to reinstate protein synthesis and, therefore, growth to re-populate. Techniques of superfit eradication utilise one, or more, of three approaches (i) direct killing, (ii) re-sensitising persister cells to conventional antimicrobials, or (iii) prevention of persister formation though few laboratory findings have been translated to clinical practice. This work will outline current findings in the field with a critical approach, where possible.</description><identifier>ISSN: 0302-8933</identifier><identifier>EISSN: 1432-072X</identifier><identifier>DOI: 10.1007/s00203-021-02585-z</identifier><identifier>PMID: 34739553</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anti-Bacterial Agents - pharmacology ; Antibiotics ; Antiinfectives and antibacterials ; Antimicrobial agents ; Antitoxins ; Archives & records ; Bacteria ; Bacteria - metabolism ; Bacterial diseases ; Bacterial infections ; Bacterial Infections - drug therapy ; Bacterial Infections - microbiology ; Biochemistry ; Biodegradation ; Biofilms ; Biomedical and Life Sciences ; Biotechnology ; Cell Biology ; Cellular stress response ; Chemotaxis ; Chronic infection ; Dormancy ; E coli ; Ecology ; Escherichia coli - metabolism ; Escherichia coli Proteins - metabolism ; Genes ; GTP-Binding Proteins ; Humans ; Infections ; Life Sciences ; Metabolism ; Microbial Ecology ; Microbiology ; Mini-Review ; Nutrient availability ; Persistent Infection - drug therapy ; Persistent Infection - microbiology ; Phenotypes ; Population ; Protein biosynthesis ; Protein synthesis ; Proteins ; Resuscitation ; Ribosomes ; Toxins</subject><ispartof>Archives of microbiology, 2021-12, Vol.203 (10), p.5899-5906</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-2f3bb2d2f7f254a16d2b5529baeef54e246a348cd72aa377de0181dc1d9452dd3</citedby><cites>FETCH-LOGICAL-c540t-2f3bb2d2f7f254a16d2b5529baeef54e246a348cd72aa377de0181dc1d9452dd3</cites><orcidid>0000-0001-9438-6300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00203-021-02585-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00203-021-02585-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34739553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wainwright, Jack</creatorcontrib><creatorcontrib>Hobbs, Glyn</creatorcontrib><creatorcontrib>Nakouti, Ismini</creatorcontrib><title>Persister cells: formation, resuscitation and combative therapies</title><title>Archives of microbiology</title><addtitle>Arch Microbiol</addtitle><addtitle>Arch Microbiol</addtitle><description>Persister cells, or superfits, have been strongly implicated in the recalcitrance and recurrence of chronic bacterial infection through the dormant (metabolically reduced) phenotype they display and the tolerance to antimicrobial agents this dormancy grants them. The complex biochemical events that lead to the formation of persister cells are not completely understood, though much research has linked the degradation of type II toxin/antitoxin systems and reduced cellular ATP levels to the rise in stress response molecules (where (p)ppGpp is of particular interest), which induce this dormant state. The equally complex mechanism of resuscitation is initiated by the cells’ ability to sense nutrient availability via chemotaxis systems. Levels of secondary messenger proteins (i.e., cAMP) within the cell are reduced to allow the resuscitation of ribosomes, by ribosomal resuscitation factor HflX, to reinstate protein synthesis and, therefore, growth to re-populate. Techniques of superfit eradication utilise one, or more, of three approaches (i) direct killing, (ii) re-sensitising persister cells to conventional antimicrobials, or (iii) prevention of persister formation though few laboratory findings have been translated to clinical practice. This work will outline current findings in the field with a critical approach, where possible.</description><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial agents</subject><subject>Antitoxins</subject><subject>Archives & records</subject><subject>Bacteria</subject><subject>Bacteria - metabolism</subject><subject>Bacterial diseases</subject><subject>Bacterial infections</subject><subject>Bacterial Infections - drug therapy</subject><subject>Bacterial Infections - microbiology</subject><subject>Biochemistry</subject><subject>Biodegradation</subject><subject>Biofilms</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Cellular stress response</subject><subject>Chemotaxis</subject><subject>Chronic infection</subject><subject>Dormancy</subject><subject>E coli</subject><subject>Ecology</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Genes</subject><subject>GTP-Binding Proteins</subject><subject>Humans</subject><subject>Infections</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Mini-Review</subject><subject>Nutrient availability</subject><subject>Persistent Infection - drug therapy</subject><subject>Persistent Infection - microbiology</subject><subject>Phenotypes</subject><subject>Population</subject><subject>Protein biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Resuscitation</subject><subject>Ribosomes</subject><subject>Toxins</subject><issn>0302-8933</issn><issn>1432-072X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LxDAQhoMo7vrxBzxIwavVyaTZtB6ERfyCBT0oeAtpM9VKt12TVtBfb9zqqhcPwzDMO-87PIztcTjiAOrYAyCIGJCHkqmM39fYmCcCY1D4sM7GIADjNBNixLa8fwbgmKbpJhuJRIlMSjFm01tyvvIduaiguvYnUdm6uemqtjmMHPneF1W3HCPT2Kho53mYXinqnsiZRUV-h22Upva0-9W32f3F-d3ZVTy7ubw-m87iQibQxViKPEeLpSpRJoZPLOZSYpYbolImhMnEiCQtrEJjhFKWgKfcFtxmiURrxTY7HXwXfT4nW1DTOVPrhavmxr3p1lT676apnvRj-6pTmcFEqWBw8GXg2peefKef29414WeNMlMBjuIQVDioCtd676hcJXDQn9j1gF0H7HqJXb-Ho_3fv61OvjkHgRgEPqyaR3I_2f_YfgC-sZAR</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Wainwright, Jack</creator><creator>Hobbs, Glyn</creator><creator>Nakouti, Ismini</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9438-6300</orcidid></search><sort><creationdate>20211201</creationdate><title>Persister cells: formation, resuscitation and combative therapies</title><author>Wainwright, Jack ; Hobbs, Glyn ; Nakouti, Ismini</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-2f3bb2d2f7f254a16d2b5529baeef54e246a348cd72aa377de0181dc1d9452dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial agents</topic><topic>Antitoxins</topic><topic>Archives & records</topic><topic>Bacteria</topic><topic>Bacteria - metabolism</topic><topic>Bacterial diseases</topic><topic>Bacterial infections</topic><topic>Bacterial Infections - drug therapy</topic><topic>Bacterial Infections - microbiology</topic><topic>Biochemistry</topic><topic>Biodegradation</topic><topic>Biofilms</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Cellular stress response</topic><topic>Chemotaxis</topic><topic>Chronic infection</topic><topic>Dormancy</topic><topic>E coli</topic><topic>Ecology</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Genes</topic><topic>GTP-Binding Proteins</topic><topic>Humans</topic><topic>Infections</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Mini-Review</topic><topic>Nutrient availability</topic><topic>Persistent Infection - drug therapy</topic><topic>Persistent Infection - microbiology</topic><topic>Phenotypes</topic><topic>Population</topic><topic>Protein biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Resuscitation</topic><topic>Ribosomes</topic><topic>Toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wainwright, Jack</creatorcontrib><creatorcontrib>Hobbs, Glyn</creatorcontrib><creatorcontrib>Nakouti, Ismini</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Archives of microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wainwright, Jack</au><au>Hobbs, Glyn</au><au>Nakouti, Ismini</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Persister cells: formation, resuscitation and combative therapies</atitle><jtitle>Archives of microbiology</jtitle><stitle>Arch Microbiol</stitle><addtitle>Arch Microbiol</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>203</volume><issue>10</issue><spage>5899</spage><epage>5906</epage><pages>5899-5906</pages><issn>0302-8933</issn><eissn>1432-072X</eissn><abstract>Persister cells, or superfits, have been strongly implicated in the recalcitrance and recurrence of chronic bacterial infection through the dormant (metabolically reduced) phenotype they display and the tolerance to antimicrobial agents this dormancy grants them. The complex biochemical events that lead to the formation of persister cells are not completely understood, though much research has linked the degradation of type II toxin/antitoxin systems and reduced cellular ATP levels to the rise in stress response molecules (where (p)ppGpp is of particular interest), which induce this dormant state. The equally complex mechanism of resuscitation is initiated by the cells’ ability to sense nutrient availability via chemotaxis systems. Levels of secondary messenger proteins (i.e., cAMP) within the cell are reduced to allow the resuscitation of ribosomes, by ribosomal resuscitation factor HflX, to reinstate protein synthesis and, therefore, growth to re-populate. Techniques of superfit eradication utilise one, or more, of three approaches (i) direct killing, (ii) re-sensitising persister cells to conventional antimicrobials, or (iii) prevention of persister formation though few laboratory findings have been translated to clinical practice. This work will outline current findings in the field with a critical approach, where possible.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34739553</pmid><doi>10.1007/s00203-021-02585-z</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9438-6300</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-8933 |
ispartof | Archives of microbiology, 2021-12, Vol.203 (10), p.5899-5906 |
issn | 0302-8933 1432-072X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8590677 |
source | MEDLINE; SpringerLink Journals |
subjects | Anti-Bacterial Agents - pharmacology Antibiotics Antiinfectives and antibacterials Antimicrobial agents Antitoxins Archives & records Bacteria Bacteria - metabolism Bacterial diseases Bacterial infections Bacterial Infections - drug therapy Bacterial Infections - microbiology Biochemistry Biodegradation Biofilms Biomedical and Life Sciences Biotechnology Cell Biology Cellular stress response Chemotaxis Chronic infection Dormancy E coli Ecology Escherichia coli - metabolism Escherichia coli Proteins - metabolism Genes GTP-Binding Proteins Humans Infections Life Sciences Metabolism Microbial Ecology Microbiology Mini-Review Nutrient availability Persistent Infection - drug therapy Persistent Infection - microbiology Phenotypes Population Protein biosynthesis Protein synthesis Proteins Resuscitation Ribosomes Toxins |
title | Persister cells: formation, resuscitation and combative therapies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Persister%20cells:%20formation,%20resuscitation%20and%20combative%20therapies&rft.jtitle=Archives%20of%20microbiology&rft.au=Wainwright,%20Jack&rft.date=2021-12-01&rft.volume=203&rft.issue=10&rft.spage=5899&rft.epage=5906&rft.pages=5899-5906&rft.issn=0302-8933&rft.eissn=1432-072X&rft_id=info:doi/10.1007/s00203-021-02585-z&rft_dat=%3Cproquest_pubme%3E2597012710%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2597012710&rft_id=info:pmid/34739553&rfr_iscdi=true |