Drosophila p38 MAPK interacts with BAG‐3/starvin to regulate age‐dependent protein homeostasis

As organisms age, they often accumulate protein aggregates that are thought to be toxic, potentially leading to age‐related diseases. This accumulation of protein aggregates is partially attributed to a failure to maintain protein homeostasis. A variety of genetic factors have been linked to longevi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aging cell 2021-11, Vol.20 (11), p.e13481-n/a
Hauptverfasser: Ryan, Sarah M., Almassey, Michael, Burch, Amelia M., Ngo, Gia, Martin, Julia M., Myers, David, Compton, Devin, Archie, Shira, Cross, Megan, Naeger, Lauren, Salzman, Ashley, Virola‐Iarussi, Alyssa, Barbee, Scott A., Mortimer, Nathan T., Sanyal, Subhabrata, Vrailas‐Mortimer, Alysia D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page e13481
container_title Aging cell
container_volume 20
creator Ryan, Sarah M.
Almassey, Michael
Burch, Amelia M.
Ngo, Gia
Martin, Julia M.
Myers, David
Compton, Devin
Archie, Shira
Cross, Megan
Naeger, Lauren
Salzman, Ashley
Virola‐Iarussi, Alyssa
Barbee, Scott A.
Mortimer, Nathan T.
Sanyal, Subhabrata
Vrailas‐Mortimer, Alysia D.
description As organisms age, they often accumulate protein aggregates that are thought to be toxic, potentially leading to age‐related diseases. This accumulation of protein aggregates is partially attributed to a failure to maintain protein homeostasis. A variety of genetic factors have been linked to longevity, but how these factors also contribute to protein homeostasis is not completely understood. In order to understand the relationship between aging and protein aggregation, we tested how a gene that regulates lifespan and age‐dependent locomotor behaviors, p38 MAPK (p38Kb), influences protein homeostasis as an organism ages. We find that p38Kb regulates age‐dependent protein aggregation through an interaction with starvin, a regulator of muscle protein homeostasis. Furthermore, we have identified Lamin as an age‐dependent target of p38Kb and starvin. We find that p38 MAPK (p38Kb) regulates age‐dependent protein homeostasis through an interaction with the BAG protein, starvin. In addition, we find that Lamin Dm0, a homologue of the aging gene Lamin A/C, is a target of p38Kb and stv for degradation during aging.
doi_str_mv 10.1111/acel.13481
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8590102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584439954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4481-67db87abb16330566ed85cb07d1b182b40e197828b9ac44fa48a8c404fb8445c3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxq0K1H9w6QMgS1wQ0rZ27MTOBWlZSkFdBAc4W3Yyu-sqG6e206q3PkKfsU_ClC2rlgO-2NL85pvP8xFyxNkxx3NiG-iOuZCa75B9LpWc1KqoXmzfXO-Rg5QuGOOqZmKX7AlZKSkU3yfuUwwpDCvfWToITb9Nf5xT32eItsmJXvu8oh-nZ_e3d-IkZRuvfE9zoBGWY2czULsErLUwQN9Cn-kQQwZkVmENARuST6_Iy4XtErx-vA_Jr8-nP2dfJvPvZ19n0_mkkWh9UqnWaWWd45UQrKwqaHXZOKZa7rgunGTAa6UL7WqLHQsrtdWNZHLhtJRlIw7Jh43uMLo1tA3aibYzQ_RrG29MsN48r_R-ZZbhyuiyZpwVKPDuUSCGyxFSNmufcLed7SGMyRQlDhJ1XUpE3_6DXoQx9vg9pOpKS1GVJVLvN1SDS04RFlsznJmH6MxDdOZPdAi_eWp_i_7NCgG-Aa59Bzf_kTLT2el8I_oboxSl6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596843655</pqid></control><display><type>article</type><title>Drosophila p38 MAPK interacts with BAG‐3/starvin to regulate age‐dependent protein homeostasis</title><source>MEDLINE</source><source>Wiley Online Library</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Ryan, Sarah M. ; Almassey, Michael ; Burch, Amelia M. ; Ngo, Gia ; Martin, Julia M. ; Myers, David ; Compton, Devin ; Archie, Shira ; Cross, Megan ; Naeger, Lauren ; Salzman, Ashley ; Virola‐Iarussi, Alyssa ; Barbee, Scott A. ; Mortimer, Nathan T. ; Sanyal, Subhabrata ; Vrailas‐Mortimer, Alysia D.</creator><creatorcontrib>Ryan, Sarah M. ; Almassey, Michael ; Burch, Amelia M. ; Ngo, Gia ; Martin, Julia M. ; Myers, David ; Compton, Devin ; Archie, Shira ; Cross, Megan ; Naeger, Lauren ; Salzman, Ashley ; Virola‐Iarussi, Alyssa ; Barbee, Scott A. ; Mortimer, Nathan T. ; Sanyal, Subhabrata ; Vrailas‐Mortimer, Alysia D.</creatorcontrib><description>As organisms age, they often accumulate protein aggregates that are thought to be toxic, potentially leading to age‐related diseases. This accumulation of protein aggregates is partially attributed to a failure to maintain protein homeostasis. A variety of genetic factors have been linked to longevity, but how these factors also contribute to protein homeostasis is not completely understood. In order to understand the relationship between aging and protein aggregation, we tested how a gene that regulates lifespan and age‐dependent locomotor behaviors, p38 MAPK (p38Kb), influences protein homeostasis as an organism ages. We find that p38Kb regulates age‐dependent protein aggregation through an interaction with starvin, a regulator of muscle protein homeostasis. Furthermore, we have identified Lamin as an age‐dependent target of p38Kb and starvin. We find that p38 MAPK (p38Kb) regulates age‐dependent protein homeostasis through an interaction with the BAG protein, starvin. In addition, we find that Lamin Dm0, a homologue of the aging gene Lamin A/C, is a target of p38Kb and stv for degradation during aging.</description><identifier>ISSN: 1474-9718</identifier><identifier>EISSN: 1474-9726</identifier><identifier>DOI: 10.1111/acel.13481</identifier><identifier>PMID: 34674371</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Age ; Aging ; Aging - genetics ; Aging - metabolism ; Animals ; Animals, Genetically Modified ; Autophagy ; BAG‐3/starvin ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Female ; Gene Deletion ; Genetic factors ; Homeostasis ; Insects ; Kinases ; Lamin ; Lamins - metabolism ; Life span ; Locomotion - genetics ; Longevity - genetics ; Macroautophagy - genetics ; Mammals ; MAP kinase ; MAP Kinase Signaling System - genetics ; Muscles - metabolism ; Original Paper ; Original Papers ; Oxidative stress ; Oxidative Stress - genetics ; p38 MAPK ; p38 Mitogen-Activated Protein Kinases - genetics ; p38 Mitogen-Activated Protein Kinases - metabolism ; Phenotype ; protein aggregation ; Protein interaction ; Proteins ; Proteolysis ; Proteostasis - genetics ; Quality control ; RNA Interference</subject><ispartof>Aging cell, 2021-11, Vol.20 (11), p.e13481-n/a</ispartof><rights>2021 The Authors. published by the Anatomical Society and John Wiley &amp; Sons Ltd.</rights><rights>2021 The Authors. Aging Cell published by the Anatomical Society and John Wiley &amp; Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4481-67db87abb16330566ed85cb07d1b182b40e197828b9ac44fa48a8c404fb8445c3</citedby><cites>FETCH-LOGICAL-c4481-67db87abb16330566ed85cb07d1b182b40e197828b9ac44fa48a8c404fb8445c3</cites><orcidid>0000-0001-8533-4293 ; 0000-0003-1729-022X ; 0000-0001-9349-9397 ; 0000-0001-5927-096X ; 0000-0003-3787-9445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8590102/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8590102/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11542,27903,27904,45553,45554,46030,46454,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34674371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ryan, Sarah M.</creatorcontrib><creatorcontrib>Almassey, Michael</creatorcontrib><creatorcontrib>Burch, Amelia M.</creatorcontrib><creatorcontrib>Ngo, Gia</creatorcontrib><creatorcontrib>Martin, Julia M.</creatorcontrib><creatorcontrib>Myers, David</creatorcontrib><creatorcontrib>Compton, Devin</creatorcontrib><creatorcontrib>Archie, Shira</creatorcontrib><creatorcontrib>Cross, Megan</creatorcontrib><creatorcontrib>Naeger, Lauren</creatorcontrib><creatorcontrib>Salzman, Ashley</creatorcontrib><creatorcontrib>Virola‐Iarussi, Alyssa</creatorcontrib><creatorcontrib>Barbee, Scott A.</creatorcontrib><creatorcontrib>Mortimer, Nathan T.</creatorcontrib><creatorcontrib>Sanyal, Subhabrata</creatorcontrib><creatorcontrib>Vrailas‐Mortimer, Alysia D.</creatorcontrib><title>Drosophila p38 MAPK interacts with BAG‐3/starvin to regulate age‐dependent protein homeostasis</title><title>Aging cell</title><addtitle>Aging Cell</addtitle><description>As organisms age, they often accumulate protein aggregates that are thought to be toxic, potentially leading to age‐related diseases. This accumulation of protein aggregates is partially attributed to a failure to maintain protein homeostasis. A variety of genetic factors have been linked to longevity, but how these factors also contribute to protein homeostasis is not completely understood. In order to understand the relationship between aging and protein aggregation, we tested how a gene that regulates lifespan and age‐dependent locomotor behaviors, p38 MAPK (p38Kb), influences protein homeostasis as an organism ages. We find that p38Kb regulates age‐dependent protein aggregation through an interaction with starvin, a regulator of muscle protein homeostasis. Furthermore, we have identified Lamin as an age‐dependent target of p38Kb and starvin. We find that p38 MAPK (p38Kb) regulates age‐dependent protein homeostasis through an interaction with the BAG protein, starvin. In addition, we find that Lamin Dm0, a homologue of the aging gene Lamin A/C, is a target of p38Kb and stv for degradation during aging.</description><subject>Age</subject><subject>Aging</subject><subject>Aging - genetics</subject><subject>Aging - metabolism</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Autophagy</subject><subject>BAG‐3/starvin</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Female</subject><subject>Gene Deletion</subject><subject>Genetic factors</subject><subject>Homeostasis</subject><subject>Insects</subject><subject>Kinases</subject><subject>Lamin</subject><subject>Lamins - metabolism</subject><subject>Life span</subject><subject>Locomotion - genetics</subject><subject>Longevity - genetics</subject><subject>Macroautophagy - genetics</subject><subject>Mammals</subject><subject>MAP kinase</subject><subject>MAP Kinase Signaling System - genetics</subject><subject>Muscles - metabolism</subject><subject>Original Paper</subject><subject>Original Papers</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - genetics</subject><subject>p38 MAPK</subject><subject>p38 Mitogen-Activated Protein Kinases - genetics</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Phenotype</subject><subject>protein aggregation</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Proteostasis - genetics</subject><subject>Quality control</subject><subject>RNA Interference</subject><issn>1474-9718</issn><issn>1474-9726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc9u1DAQxq0K1H9w6QMgS1wQ0rZ27MTOBWlZSkFdBAc4W3Yyu-sqG6e206q3PkKfsU_ClC2rlgO-2NL85pvP8xFyxNkxx3NiG-iOuZCa75B9LpWc1KqoXmzfXO-Rg5QuGOOqZmKX7AlZKSkU3yfuUwwpDCvfWToITb9Nf5xT32eItsmJXvu8oh-nZ_e3d-IkZRuvfE9zoBGWY2czULsErLUwQN9Cn-kQQwZkVmENARuST6_Iy4XtErx-vA_Jr8-nP2dfJvPvZ19n0_mkkWh9UqnWaWWd45UQrKwqaHXZOKZa7rgunGTAa6UL7WqLHQsrtdWNZHLhtJRlIw7Jh43uMLo1tA3aibYzQ_RrG29MsN48r_R-ZZbhyuiyZpwVKPDuUSCGyxFSNmufcLed7SGMyRQlDhJ1XUpE3_6DXoQx9vg9pOpKS1GVJVLvN1SDS04RFlsznJmH6MxDdOZPdAi_eWp_i_7NCgG-Aa59Bzf_kTLT2el8I_oboxSl6g</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Ryan, Sarah M.</creator><creator>Almassey, Michael</creator><creator>Burch, Amelia M.</creator><creator>Ngo, Gia</creator><creator>Martin, Julia M.</creator><creator>Myers, David</creator><creator>Compton, Devin</creator><creator>Archie, Shira</creator><creator>Cross, Megan</creator><creator>Naeger, Lauren</creator><creator>Salzman, Ashley</creator><creator>Virola‐Iarussi, Alyssa</creator><creator>Barbee, Scott A.</creator><creator>Mortimer, Nathan T.</creator><creator>Sanyal, Subhabrata</creator><creator>Vrailas‐Mortimer, Alysia D.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8533-4293</orcidid><orcidid>https://orcid.org/0000-0003-1729-022X</orcidid><orcidid>https://orcid.org/0000-0001-9349-9397</orcidid><orcidid>https://orcid.org/0000-0001-5927-096X</orcidid><orcidid>https://orcid.org/0000-0003-3787-9445</orcidid></search><sort><creationdate>202111</creationdate><title>Drosophila p38 MAPK interacts with BAG‐3/starvin to regulate age‐dependent protein homeostasis</title><author>Ryan, Sarah M. ; Almassey, Michael ; Burch, Amelia M. ; Ngo, Gia ; Martin, Julia M. ; Myers, David ; Compton, Devin ; Archie, Shira ; Cross, Megan ; Naeger, Lauren ; Salzman, Ashley ; Virola‐Iarussi, Alyssa ; Barbee, Scott A. ; Mortimer, Nathan T. ; Sanyal, Subhabrata ; Vrailas‐Mortimer, Alysia D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4481-67db87abb16330566ed85cb07d1b182b40e197828b9ac44fa48a8c404fb8445c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Age</topic><topic>Aging</topic><topic>Aging - genetics</topic><topic>Aging - metabolism</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Autophagy</topic><topic>BAG‐3/starvin</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Female</topic><topic>Gene Deletion</topic><topic>Genetic factors</topic><topic>Homeostasis</topic><topic>Insects</topic><topic>Kinases</topic><topic>Lamin</topic><topic>Lamins - metabolism</topic><topic>Life span</topic><topic>Locomotion - genetics</topic><topic>Longevity - genetics</topic><topic>Macroautophagy - genetics</topic><topic>Mammals</topic><topic>MAP kinase</topic><topic>MAP Kinase Signaling System - genetics</topic><topic>Muscles - metabolism</topic><topic>Original Paper</topic><topic>Original Papers</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - genetics</topic><topic>p38 MAPK</topic><topic>p38 Mitogen-Activated Protein Kinases - genetics</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Phenotype</topic><topic>protein aggregation</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Proteostasis - genetics</topic><topic>Quality control</topic><topic>RNA Interference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryan, Sarah M.</creatorcontrib><creatorcontrib>Almassey, Michael</creatorcontrib><creatorcontrib>Burch, Amelia M.</creatorcontrib><creatorcontrib>Ngo, Gia</creatorcontrib><creatorcontrib>Martin, Julia M.</creatorcontrib><creatorcontrib>Myers, David</creatorcontrib><creatorcontrib>Compton, Devin</creatorcontrib><creatorcontrib>Archie, Shira</creatorcontrib><creatorcontrib>Cross, Megan</creatorcontrib><creatorcontrib>Naeger, Lauren</creatorcontrib><creatorcontrib>Salzman, Ashley</creatorcontrib><creatorcontrib>Virola‐Iarussi, Alyssa</creatorcontrib><creatorcontrib>Barbee, Scott A.</creatorcontrib><creatorcontrib>Mortimer, Nathan T.</creatorcontrib><creatorcontrib>Sanyal, Subhabrata</creatorcontrib><creatorcontrib>Vrailas‐Mortimer, Alysia D.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Aging cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryan, Sarah M.</au><au>Almassey, Michael</au><au>Burch, Amelia M.</au><au>Ngo, Gia</au><au>Martin, Julia M.</au><au>Myers, David</au><au>Compton, Devin</au><au>Archie, Shira</au><au>Cross, Megan</au><au>Naeger, Lauren</au><au>Salzman, Ashley</au><au>Virola‐Iarussi, Alyssa</au><au>Barbee, Scott A.</au><au>Mortimer, Nathan T.</au><au>Sanyal, Subhabrata</au><au>Vrailas‐Mortimer, Alysia D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drosophila p38 MAPK interacts with BAG‐3/starvin to regulate age‐dependent protein homeostasis</atitle><jtitle>Aging cell</jtitle><addtitle>Aging Cell</addtitle><date>2021-11</date><risdate>2021</risdate><volume>20</volume><issue>11</issue><spage>e13481</spage><epage>n/a</epage><pages>e13481-n/a</pages><issn>1474-9718</issn><eissn>1474-9726</eissn><abstract>As organisms age, they often accumulate protein aggregates that are thought to be toxic, potentially leading to age‐related diseases. This accumulation of protein aggregates is partially attributed to a failure to maintain protein homeostasis. A variety of genetic factors have been linked to longevity, but how these factors also contribute to protein homeostasis is not completely understood. In order to understand the relationship between aging and protein aggregation, we tested how a gene that regulates lifespan and age‐dependent locomotor behaviors, p38 MAPK (p38Kb), influences protein homeostasis as an organism ages. We find that p38Kb regulates age‐dependent protein aggregation through an interaction with starvin, a regulator of muscle protein homeostasis. Furthermore, we have identified Lamin as an age‐dependent target of p38Kb and starvin. We find that p38 MAPK (p38Kb) regulates age‐dependent protein homeostasis through an interaction with the BAG protein, starvin. In addition, we find that Lamin Dm0, a homologue of the aging gene Lamin A/C, is a target of p38Kb and stv for degradation during aging.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>34674371</pmid><doi>10.1111/acel.13481</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8533-4293</orcidid><orcidid>https://orcid.org/0000-0003-1729-022X</orcidid><orcidid>https://orcid.org/0000-0001-9349-9397</orcidid><orcidid>https://orcid.org/0000-0001-5927-096X</orcidid><orcidid>https://orcid.org/0000-0003-3787-9445</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1474-9718
ispartof Aging cell, 2021-11, Vol.20 (11), p.e13481-n/a
issn 1474-9718
1474-9726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8590102
source MEDLINE; Wiley Online Library; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Age
Aging
Aging - genetics
Aging - metabolism
Animals
Animals, Genetically Modified
Autophagy
BAG‐3/starvin
Drosophila melanogaster - genetics
Drosophila melanogaster - metabolism
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Female
Gene Deletion
Genetic factors
Homeostasis
Insects
Kinases
Lamin
Lamins - metabolism
Life span
Locomotion - genetics
Longevity - genetics
Macroautophagy - genetics
Mammals
MAP kinase
MAP Kinase Signaling System - genetics
Muscles - metabolism
Original Paper
Original Papers
Oxidative stress
Oxidative Stress - genetics
p38 MAPK
p38 Mitogen-Activated Protein Kinases - genetics
p38 Mitogen-Activated Protein Kinases - metabolism
Phenotype
protein aggregation
Protein interaction
Proteins
Proteolysis
Proteostasis - genetics
Quality control
RNA Interference
title Drosophila p38 MAPK interacts with BAG‐3/starvin to regulate age‐dependent protein homeostasis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drosophila%20p38%20MAPK%20interacts%20with%20BAG%E2%80%903/starvin%20to%20regulate%20age%E2%80%90dependent%20protein%20homeostasis&rft.jtitle=Aging%20cell&rft.au=Ryan,%20Sarah%20M.&rft.date=2021-11&rft.volume=20&rft.issue=11&rft.spage=e13481&rft.epage=n/a&rft.pages=e13481-n/a&rft.issn=1474-9718&rft.eissn=1474-9726&rft_id=info:doi/10.1111/acel.13481&rft_dat=%3Cproquest_pubme%3E2584439954%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596843655&rft_id=info:pmid/34674371&rfr_iscdi=true