Drosophila p38 MAPK interacts with BAG‐3/starvin to regulate age‐dependent protein homeostasis
As organisms age, they often accumulate protein aggregates that are thought to be toxic, potentially leading to age‐related diseases. This accumulation of protein aggregates is partially attributed to a failure to maintain protein homeostasis. A variety of genetic factors have been linked to longevi...
Gespeichert in:
Veröffentlicht in: | Aging cell 2021-11, Vol.20 (11), p.e13481-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | e13481 |
container_title | Aging cell |
container_volume | 20 |
creator | Ryan, Sarah M. Almassey, Michael Burch, Amelia M. Ngo, Gia Martin, Julia M. Myers, David Compton, Devin Archie, Shira Cross, Megan Naeger, Lauren Salzman, Ashley Virola‐Iarussi, Alyssa Barbee, Scott A. Mortimer, Nathan T. Sanyal, Subhabrata Vrailas‐Mortimer, Alysia D. |
description | As organisms age, they often accumulate protein aggregates that are thought to be toxic, potentially leading to age‐related diseases. This accumulation of protein aggregates is partially attributed to a failure to maintain protein homeostasis. A variety of genetic factors have been linked to longevity, but how these factors also contribute to protein homeostasis is not completely understood. In order to understand the relationship between aging and protein aggregation, we tested how a gene that regulates lifespan and age‐dependent locomotor behaviors, p38 MAPK (p38Kb), influences protein homeostasis as an organism ages. We find that p38Kb regulates age‐dependent protein aggregation through an interaction with starvin, a regulator of muscle protein homeostasis. Furthermore, we have identified Lamin as an age‐dependent target of p38Kb and starvin.
We find that p38 MAPK (p38Kb) regulates age‐dependent protein homeostasis through an interaction with the BAG protein, starvin. In addition, we find that Lamin Dm0, a homologue of the aging gene Lamin A/C, is a target of p38Kb and stv for degradation during aging. |
doi_str_mv | 10.1111/acel.13481 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8590102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584439954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4481-67db87abb16330566ed85cb07d1b182b40e197828b9ac44fa48a8c404fb8445c3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxq0K1H9w6QMgS1wQ0rZ27MTOBWlZSkFdBAc4W3Yyu-sqG6e206q3PkKfsU_ClC2rlgO-2NL85pvP8xFyxNkxx3NiG-iOuZCa75B9LpWc1KqoXmzfXO-Rg5QuGOOqZmKX7AlZKSkU3yfuUwwpDCvfWToITb9Nf5xT32eItsmJXvu8oh-nZ_e3d-IkZRuvfE9zoBGWY2czULsErLUwQN9Cn-kQQwZkVmENARuST6_Iy4XtErx-vA_Jr8-nP2dfJvPvZ19n0_mkkWh9UqnWaWWd45UQrKwqaHXZOKZa7rgunGTAa6UL7WqLHQsrtdWNZHLhtJRlIw7Jh43uMLo1tA3aibYzQ_RrG29MsN48r_R-ZZbhyuiyZpwVKPDuUSCGyxFSNmufcLed7SGMyRQlDhJ1XUpE3_6DXoQx9vg9pOpKS1GVJVLvN1SDS04RFlsznJmH6MxDdOZPdAi_eWp_i_7NCgG-Aa59Bzf_kTLT2el8I_oboxSl6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596843655</pqid></control><display><type>article</type><title>Drosophila p38 MAPK interacts with BAG‐3/starvin to regulate age‐dependent protein homeostasis</title><source>MEDLINE</source><source>Wiley Online Library</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Ryan, Sarah M. ; Almassey, Michael ; Burch, Amelia M. ; Ngo, Gia ; Martin, Julia M. ; Myers, David ; Compton, Devin ; Archie, Shira ; Cross, Megan ; Naeger, Lauren ; Salzman, Ashley ; Virola‐Iarussi, Alyssa ; Barbee, Scott A. ; Mortimer, Nathan T. ; Sanyal, Subhabrata ; Vrailas‐Mortimer, Alysia D.</creator><creatorcontrib>Ryan, Sarah M. ; Almassey, Michael ; Burch, Amelia M. ; Ngo, Gia ; Martin, Julia M. ; Myers, David ; Compton, Devin ; Archie, Shira ; Cross, Megan ; Naeger, Lauren ; Salzman, Ashley ; Virola‐Iarussi, Alyssa ; Barbee, Scott A. ; Mortimer, Nathan T. ; Sanyal, Subhabrata ; Vrailas‐Mortimer, Alysia D.</creatorcontrib><description>As organisms age, they often accumulate protein aggregates that are thought to be toxic, potentially leading to age‐related diseases. This accumulation of protein aggregates is partially attributed to a failure to maintain protein homeostasis. A variety of genetic factors have been linked to longevity, but how these factors also contribute to protein homeostasis is not completely understood. In order to understand the relationship between aging and protein aggregation, we tested how a gene that regulates lifespan and age‐dependent locomotor behaviors, p38 MAPK (p38Kb), influences protein homeostasis as an organism ages. We find that p38Kb regulates age‐dependent protein aggregation through an interaction with starvin, a regulator of muscle protein homeostasis. Furthermore, we have identified Lamin as an age‐dependent target of p38Kb and starvin.
We find that p38 MAPK (p38Kb) regulates age‐dependent protein homeostasis through an interaction with the BAG protein, starvin. In addition, we find that Lamin Dm0, a homologue of the aging gene Lamin A/C, is a target of p38Kb and stv for degradation during aging.</description><identifier>ISSN: 1474-9718</identifier><identifier>EISSN: 1474-9726</identifier><identifier>DOI: 10.1111/acel.13481</identifier><identifier>PMID: 34674371</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Age ; Aging ; Aging - genetics ; Aging - metabolism ; Animals ; Animals, Genetically Modified ; Autophagy ; BAG‐3/starvin ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Female ; Gene Deletion ; Genetic factors ; Homeostasis ; Insects ; Kinases ; Lamin ; Lamins - metabolism ; Life span ; Locomotion - genetics ; Longevity - genetics ; Macroautophagy - genetics ; Mammals ; MAP kinase ; MAP Kinase Signaling System - genetics ; Muscles - metabolism ; Original Paper ; Original Papers ; Oxidative stress ; Oxidative Stress - genetics ; p38 MAPK ; p38 Mitogen-Activated Protein Kinases - genetics ; p38 Mitogen-Activated Protein Kinases - metabolism ; Phenotype ; protein aggregation ; Protein interaction ; Proteins ; Proteolysis ; Proteostasis - genetics ; Quality control ; RNA Interference</subject><ispartof>Aging cell, 2021-11, Vol.20 (11), p.e13481-n/a</ispartof><rights>2021 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd.</rights><rights>2021 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4481-67db87abb16330566ed85cb07d1b182b40e197828b9ac44fa48a8c404fb8445c3</citedby><cites>FETCH-LOGICAL-c4481-67db87abb16330566ed85cb07d1b182b40e197828b9ac44fa48a8c404fb8445c3</cites><orcidid>0000-0001-8533-4293 ; 0000-0003-1729-022X ; 0000-0001-9349-9397 ; 0000-0001-5927-096X ; 0000-0003-3787-9445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8590102/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8590102/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11542,27903,27904,45553,45554,46030,46454,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34674371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ryan, Sarah M.</creatorcontrib><creatorcontrib>Almassey, Michael</creatorcontrib><creatorcontrib>Burch, Amelia M.</creatorcontrib><creatorcontrib>Ngo, Gia</creatorcontrib><creatorcontrib>Martin, Julia M.</creatorcontrib><creatorcontrib>Myers, David</creatorcontrib><creatorcontrib>Compton, Devin</creatorcontrib><creatorcontrib>Archie, Shira</creatorcontrib><creatorcontrib>Cross, Megan</creatorcontrib><creatorcontrib>Naeger, Lauren</creatorcontrib><creatorcontrib>Salzman, Ashley</creatorcontrib><creatorcontrib>Virola‐Iarussi, Alyssa</creatorcontrib><creatorcontrib>Barbee, Scott A.</creatorcontrib><creatorcontrib>Mortimer, Nathan T.</creatorcontrib><creatorcontrib>Sanyal, Subhabrata</creatorcontrib><creatorcontrib>Vrailas‐Mortimer, Alysia D.</creatorcontrib><title>Drosophila p38 MAPK interacts with BAG‐3/starvin to regulate age‐dependent protein homeostasis</title><title>Aging cell</title><addtitle>Aging Cell</addtitle><description>As organisms age, they often accumulate protein aggregates that are thought to be toxic, potentially leading to age‐related diseases. This accumulation of protein aggregates is partially attributed to a failure to maintain protein homeostasis. A variety of genetic factors have been linked to longevity, but how these factors also contribute to protein homeostasis is not completely understood. In order to understand the relationship between aging and protein aggregation, we tested how a gene that regulates lifespan and age‐dependent locomotor behaviors, p38 MAPK (p38Kb), influences protein homeostasis as an organism ages. We find that p38Kb regulates age‐dependent protein aggregation through an interaction with starvin, a regulator of muscle protein homeostasis. Furthermore, we have identified Lamin as an age‐dependent target of p38Kb and starvin.
We find that p38 MAPK (p38Kb) regulates age‐dependent protein homeostasis through an interaction with the BAG protein, starvin. In addition, we find that Lamin Dm0, a homologue of the aging gene Lamin A/C, is a target of p38Kb and stv for degradation during aging.</description><subject>Age</subject><subject>Aging</subject><subject>Aging - genetics</subject><subject>Aging - metabolism</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Autophagy</subject><subject>BAG‐3/starvin</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Female</subject><subject>Gene Deletion</subject><subject>Genetic factors</subject><subject>Homeostasis</subject><subject>Insects</subject><subject>Kinases</subject><subject>Lamin</subject><subject>Lamins - metabolism</subject><subject>Life span</subject><subject>Locomotion - genetics</subject><subject>Longevity - genetics</subject><subject>Macroautophagy - genetics</subject><subject>Mammals</subject><subject>MAP kinase</subject><subject>MAP Kinase Signaling System - genetics</subject><subject>Muscles - metabolism</subject><subject>Original Paper</subject><subject>Original Papers</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - genetics</subject><subject>p38 MAPK</subject><subject>p38 Mitogen-Activated Protein Kinases - genetics</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Phenotype</subject><subject>protein aggregation</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Proteostasis - genetics</subject><subject>Quality control</subject><subject>RNA Interference</subject><issn>1474-9718</issn><issn>1474-9726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc9u1DAQxq0K1H9w6QMgS1wQ0rZ27MTOBWlZSkFdBAc4W3Yyu-sqG6e206q3PkKfsU_ClC2rlgO-2NL85pvP8xFyxNkxx3NiG-iOuZCa75B9LpWc1KqoXmzfXO-Rg5QuGOOqZmKX7AlZKSkU3yfuUwwpDCvfWToITb9Nf5xT32eItsmJXvu8oh-nZ_e3d-IkZRuvfE9zoBGWY2czULsErLUwQN9Cn-kQQwZkVmENARuST6_Iy4XtErx-vA_Jr8-nP2dfJvPvZ19n0_mkkWh9UqnWaWWd45UQrKwqaHXZOKZa7rgunGTAa6UL7WqLHQsrtdWNZHLhtJRlIw7Jh43uMLo1tA3aibYzQ_RrG29MsN48r_R-ZZbhyuiyZpwVKPDuUSCGyxFSNmufcLed7SGMyRQlDhJ1XUpE3_6DXoQx9vg9pOpKS1GVJVLvN1SDS04RFlsznJmH6MxDdOZPdAi_eWp_i_7NCgG-Aa59Bzf_kTLT2el8I_oboxSl6g</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Ryan, Sarah M.</creator><creator>Almassey, Michael</creator><creator>Burch, Amelia M.</creator><creator>Ngo, Gia</creator><creator>Martin, Julia M.</creator><creator>Myers, David</creator><creator>Compton, Devin</creator><creator>Archie, Shira</creator><creator>Cross, Megan</creator><creator>Naeger, Lauren</creator><creator>Salzman, Ashley</creator><creator>Virola‐Iarussi, Alyssa</creator><creator>Barbee, Scott A.</creator><creator>Mortimer, Nathan T.</creator><creator>Sanyal, Subhabrata</creator><creator>Vrailas‐Mortimer, Alysia D.</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8533-4293</orcidid><orcidid>https://orcid.org/0000-0003-1729-022X</orcidid><orcidid>https://orcid.org/0000-0001-9349-9397</orcidid><orcidid>https://orcid.org/0000-0001-5927-096X</orcidid><orcidid>https://orcid.org/0000-0003-3787-9445</orcidid></search><sort><creationdate>202111</creationdate><title>Drosophila p38 MAPK interacts with BAG‐3/starvin to regulate age‐dependent protein homeostasis</title><author>Ryan, Sarah M. ; Almassey, Michael ; Burch, Amelia M. ; Ngo, Gia ; Martin, Julia M. ; Myers, David ; Compton, Devin ; Archie, Shira ; Cross, Megan ; Naeger, Lauren ; Salzman, Ashley ; Virola‐Iarussi, Alyssa ; Barbee, Scott A. ; Mortimer, Nathan T. ; Sanyal, Subhabrata ; Vrailas‐Mortimer, Alysia D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4481-67db87abb16330566ed85cb07d1b182b40e197828b9ac44fa48a8c404fb8445c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Age</topic><topic>Aging</topic><topic>Aging - genetics</topic><topic>Aging - metabolism</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Autophagy</topic><topic>BAG‐3/starvin</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Female</topic><topic>Gene Deletion</topic><topic>Genetic factors</topic><topic>Homeostasis</topic><topic>Insects</topic><topic>Kinases</topic><topic>Lamin</topic><topic>Lamins - metabolism</topic><topic>Life span</topic><topic>Locomotion - genetics</topic><topic>Longevity - genetics</topic><topic>Macroautophagy - genetics</topic><topic>Mammals</topic><topic>MAP kinase</topic><topic>MAP Kinase Signaling System - genetics</topic><topic>Muscles - metabolism</topic><topic>Original Paper</topic><topic>Original Papers</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - genetics</topic><topic>p38 MAPK</topic><topic>p38 Mitogen-Activated Protein Kinases - genetics</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Phenotype</topic><topic>protein aggregation</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Proteostasis - genetics</topic><topic>Quality control</topic><topic>RNA Interference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryan, Sarah M.</creatorcontrib><creatorcontrib>Almassey, Michael</creatorcontrib><creatorcontrib>Burch, Amelia M.</creatorcontrib><creatorcontrib>Ngo, Gia</creatorcontrib><creatorcontrib>Martin, Julia M.</creatorcontrib><creatorcontrib>Myers, David</creatorcontrib><creatorcontrib>Compton, Devin</creatorcontrib><creatorcontrib>Archie, Shira</creatorcontrib><creatorcontrib>Cross, Megan</creatorcontrib><creatorcontrib>Naeger, Lauren</creatorcontrib><creatorcontrib>Salzman, Ashley</creatorcontrib><creatorcontrib>Virola‐Iarussi, Alyssa</creatorcontrib><creatorcontrib>Barbee, Scott A.</creatorcontrib><creatorcontrib>Mortimer, Nathan T.</creatorcontrib><creatorcontrib>Sanyal, Subhabrata</creatorcontrib><creatorcontrib>Vrailas‐Mortimer, Alysia D.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Aging cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryan, Sarah M.</au><au>Almassey, Michael</au><au>Burch, Amelia M.</au><au>Ngo, Gia</au><au>Martin, Julia M.</au><au>Myers, David</au><au>Compton, Devin</au><au>Archie, Shira</au><au>Cross, Megan</au><au>Naeger, Lauren</au><au>Salzman, Ashley</au><au>Virola‐Iarussi, Alyssa</au><au>Barbee, Scott A.</au><au>Mortimer, Nathan T.</au><au>Sanyal, Subhabrata</au><au>Vrailas‐Mortimer, Alysia D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drosophila p38 MAPK interacts with BAG‐3/starvin to regulate age‐dependent protein homeostasis</atitle><jtitle>Aging cell</jtitle><addtitle>Aging Cell</addtitle><date>2021-11</date><risdate>2021</risdate><volume>20</volume><issue>11</issue><spage>e13481</spage><epage>n/a</epage><pages>e13481-n/a</pages><issn>1474-9718</issn><eissn>1474-9726</eissn><abstract>As organisms age, they often accumulate protein aggregates that are thought to be toxic, potentially leading to age‐related diseases. This accumulation of protein aggregates is partially attributed to a failure to maintain protein homeostasis. A variety of genetic factors have been linked to longevity, but how these factors also contribute to protein homeostasis is not completely understood. In order to understand the relationship between aging and protein aggregation, we tested how a gene that regulates lifespan and age‐dependent locomotor behaviors, p38 MAPK (p38Kb), influences protein homeostasis as an organism ages. We find that p38Kb regulates age‐dependent protein aggregation through an interaction with starvin, a regulator of muscle protein homeostasis. Furthermore, we have identified Lamin as an age‐dependent target of p38Kb and starvin.
We find that p38 MAPK (p38Kb) regulates age‐dependent protein homeostasis through an interaction with the BAG protein, starvin. In addition, we find that Lamin Dm0, a homologue of the aging gene Lamin A/C, is a target of p38Kb and stv for degradation during aging.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>34674371</pmid><doi>10.1111/acel.13481</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8533-4293</orcidid><orcidid>https://orcid.org/0000-0003-1729-022X</orcidid><orcidid>https://orcid.org/0000-0001-9349-9397</orcidid><orcidid>https://orcid.org/0000-0001-5927-096X</orcidid><orcidid>https://orcid.org/0000-0003-3787-9445</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1474-9718 |
ispartof | Aging cell, 2021-11, Vol.20 (11), p.e13481-n/a |
issn | 1474-9718 1474-9726 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8590102 |
source | MEDLINE; Wiley Online Library; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Age Aging Aging - genetics Aging - metabolism Animals Animals, Genetically Modified Autophagy BAG‐3/starvin Drosophila melanogaster - genetics Drosophila melanogaster - metabolism Drosophila Proteins - genetics Drosophila Proteins - metabolism Female Gene Deletion Genetic factors Homeostasis Insects Kinases Lamin Lamins - metabolism Life span Locomotion - genetics Longevity - genetics Macroautophagy - genetics Mammals MAP kinase MAP Kinase Signaling System - genetics Muscles - metabolism Original Paper Original Papers Oxidative stress Oxidative Stress - genetics p38 MAPK p38 Mitogen-Activated Protein Kinases - genetics p38 Mitogen-Activated Protein Kinases - metabolism Phenotype protein aggregation Protein interaction Proteins Proteolysis Proteostasis - genetics Quality control RNA Interference |
title | Drosophila p38 MAPK interacts with BAG‐3/starvin to regulate age‐dependent protein homeostasis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drosophila%20p38%20MAPK%20interacts%20with%20BAG%E2%80%903/starvin%20to%20regulate%20age%E2%80%90dependent%20protein%20homeostasis&rft.jtitle=Aging%20cell&rft.au=Ryan,%20Sarah%20M.&rft.date=2021-11&rft.volume=20&rft.issue=11&rft.spage=e13481&rft.epage=n/a&rft.pages=e13481-n/a&rft.issn=1474-9718&rft.eissn=1474-9726&rft_id=info:doi/10.1111/acel.13481&rft_dat=%3Cproquest_pubme%3E2584439954%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596843655&rft_id=info:pmid/34674371&rfr_iscdi=true |