Surgical workflow recognition with 3DCNN for Sleeve Gastrectomy

Purpose Surgical workflow recognition is a crucial and challenging problem when building a computer-assisted surgery system. Current techniques focus on utilizing a convolutional neural network and a recurrent neural network (CNN–RNN) to solve the surgical workflow recognition problem. In this paper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for computer assisted radiology and surgery 2021-11, Vol.16 (11), p.2029-2036
Hauptverfasser: Zhang, Bokai, Ghanem, Amer, Simes, Alexander, Choi, Henry, Yoo, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2036
container_issue 11
container_start_page 2029
container_title International journal for computer assisted radiology and surgery
container_volume 16
creator Zhang, Bokai
Ghanem, Amer
Simes, Alexander
Choi, Henry
Yoo, Andrew
description Purpose Surgical workflow recognition is a crucial and challenging problem when building a computer-assisted surgery system. Current techniques focus on utilizing a convolutional neural network and a recurrent neural network (CNN–RNN) to solve the surgical workflow recognition problem. In this paper, we attempt to use a deep 3DCNN to solve this problem. Methods In order to tackle the surgical workflow recognition problem and the imbalanced data problem, we implement a 3DCNN workflow referred to as I3D-FL-PKF. We utilize focal loss (FL) to train a 3DCNN architecture known as Inflated 3D ConvNet (I3D) for surgical workflow recognition. We use prior knowledge filtering (PKF) to filter the recognition results. Results We evaluate our proposed workflow on a large sleeve gastrectomy surgical video dataset. We show that focal loss can help to address the imbalanced data problem. We show that our PKF can be used to generate smoothed prediction results and improve the overall accuracy. We show that the proposed workflow achieves 84.16% frame-level accuracy and reaches a weighted Jaccard score of 0.7327 which outperforms traditional CNN–RNN design. Conclusion The proposed workflow can obtain consistent and smooth predictions not only within the surgical phases but also for phase transitions. By utilizing focal loss and prior knowledge filtering, our implementation of deep 3DCNN has great potential to solve surgical workflow recognition problems for clinical practice.
doi_str_mv 10.1007/s11548-021-02473-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8589754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563420431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-40eacc2e2f2189f735584a9d9e45b34fa7bd89ceeed04555dd871a9cd2b52be63</originalsourceid><addsrcrecordid>eNp9kUlPwzAQhS0EomX5AxxQJC5cAl6T-AJCZZUQHApny3EmbSCNi51Q8e8xpJTlwGHkkeab5zd6CO0RfEQwTo89IYJnMaYkFE9ZzNbQkGQJiRNO5fqqJ3iAtrx_wpiLlIlNNGCcEyEwG6LTcecmldF1tLDuuaztInJg7KSp2so20aJqpxE7H93dRaV10bgGeIXoSvs2UK2dve2gjVLXHnaX7zZ6vLx4GF3Ht_dXN6Oz29jwlLcxx6CNoUBLSjJZBhci41oWErjIGS91mheZNABQBJNCFEWWEi1NQXNBc0jYNjrpdeddPoPCQNM6Xau5q2bavSmrK_V70lRTNbGvKhOZTAUPAodLAWdfOvCtmlXeQF3rBmznFRUJ4xRzRgJ68Ad9sp1rwnmBkokUOJUfgrSnjLPeOyhXZghWH_moPh8V8lGf-SgWlvZ_nrFa-QokAKwHfBg1E3Dff_8j-w6kD5vA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596950794</pqid></control><display><type>article</type><title>Surgical workflow recognition with 3DCNN for Sleeve Gastrectomy</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Bokai ; Ghanem, Amer ; Simes, Alexander ; Choi, Henry ; Yoo, Andrew</creator><creatorcontrib>Zhang, Bokai ; Ghanem, Amer ; Simes, Alexander ; Choi, Henry ; Yoo, Andrew</creatorcontrib><description>Purpose Surgical workflow recognition is a crucial and challenging problem when building a computer-assisted surgery system. Current techniques focus on utilizing a convolutional neural network and a recurrent neural network (CNN–RNN) to solve the surgical workflow recognition problem. In this paper, we attempt to use a deep 3DCNN to solve this problem. Methods In order to tackle the surgical workflow recognition problem and the imbalanced data problem, we implement a 3DCNN workflow referred to as I3D-FL-PKF. We utilize focal loss (FL) to train a 3DCNN architecture known as Inflated 3D ConvNet (I3D) for surgical workflow recognition. We use prior knowledge filtering (PKF) to filter the recognition results. Results We evaluate our proposed workflow on a large sleeve gastrectomy surgical video dataset. We show that focal loss can help to address the imbalanced data problem. We show that our PKF can be used to generate smoothed prediction results and improve the overall accuracy. We show that the proposed workflow achieves 84.16% frame-level accuracy and reaches a weighted Jaccard score of 0.7327 which outperforms traditional CNN–RNN design. Conclusion The proposed workflow can obtain consistent and smooth predictions not only within the surgical phases but also for phase transitions. By utilizing focal loss and prior knowledge filtering, our implementation of deep 3DCNN has great potential to solve surgical workflow recognition problems for clinical practice.</description><identifier>ISSN: 1861-6410</identifier><identifier>EISSN: 1861-6429</identifier><identifier>DOI: 10.1007/s11548-021-02473-3</identifier><identifier>PMID: 34415503</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Artificial neural networks ; Computer Imaging ; Computer Science ; Filtration ; Gastrectomy ; Gastrointestinal surgery ; Health Informatics ; Humans ; Imaging ; Medicine ; Medicine &amp; Public Health ; Neural networks ; Neural Networks, Computer ; Original ; Original Article ; Pattern Recognition and Graphics ; Phase transitions ; Radiology ; Recognition ; Recurrent neural networks ; Surgery ; Surgery, Computer-Assisted ; Vision ; Workflow</subject><ispartof>International journal for computer assisted radiology and surgery, 2021-11, Vol.16 (11), p.2029-2036</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-40eacc2e2f2189f735584a9d9e45b34fa7bd89ceeed04555dd871a9cd2b52be63</citedby><cites>FETCH-LOGICAL-c474t-40eacc2e2f2189f735584a9d9e45b34fa7bd89ceeed04555dd871a9cd2b52be63</cites><orcidid>0000-0003-1906-2116</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11548-021-02473-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11548-021-02473-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34415503$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Bokai</creatorcontrib><creatorcontrib>Ghanem, Amer</creatorcontrib><creatorcontrib>Simes, Alexander</creatorcontrib><creatorcontrib>Choi, Henry</creatorcontrib><creatorcontrib>Yoo, Andrew</creatorcontrib><title>Surgical workflow recognition with 3DCNN for Sleeve Gastrectomy</title><title>International journal for computer assisted radiology and surgery</title><addtitle>Int J CARS</addtitle><addtitle>Int J Comput Assist Radiol Surg</addtitle><description>Purpose Surgical workflow recognition is a crucial and challenging problem when building a computer-assisted surgery system. Current techniques focus on utilizing a convolutional neural network and a recurrent neural network (CNN–RNN) to solve the surgical workflow recognition problem. In this paper, we attempt to use a deep 3DCNN to solve this problem. Methods In order to tackle the surgical workflow recognition problem and the imbalanced data problem, we implement a 3DCNN workflow referred to as I3D-FL-PKF. We utilize focal loss (FL) to train a 3DCNN architecture known as Inflated 3D ConvNet (I3D) for surgical workflow recognition. We use prior knowledge filtering (PKF) to filter the recognition results. Results We evaluate our proposed workflow on a large sleeve gastrectomy surgical video dataset. We show that focal loss can help to address the imbalanced data problem. We show that our PKF can be used to generate smoothed prediction results and improve the overall accuracy. We show that the proposed workflow achieves 84.16% frame-level accuracy and reaches a weighted Jaccard score of 0.7327 which outperforms traditional CNN–RNN design. Conclusion The proposed workflow can obtain consistent and smooth predictions not only within the surgical phases but also for phase transitions. By utilizing focal loss and prior knowledge filtering, our implementation of deep 3DCNN has great potential to solve surgical workflow recognition problems for clinical practice.</description><subject>Artificial neural networks</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Filtration</subject><subject>Gastrectomy</subject><subject>Gastrointestinal surgery</subject><subject>Health Informatics</subject><subject>Humans</subject><subject>Imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Original</subject><subject>Original Article</subject><subject>Pattern Recognition and Graphics</subject><subject>Phase transitions</subject><subject>Radiology</subject><subject>Recognition</subject><subject>Recurrent neural networks</subject><subject>Surgery</subject><subject>Surgery, Computer-Assisted</subject><subject>Vision</subject><subject>Workflow</subject><issn>1861-6410</issn><issn>1861-6429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUlPwzAQhS0EomX5AxxQJC5cAl6T-AJCZZUQHApny3EmbSCNi51Q8e8xpJTlwGHkkeab5zd6CO0RfEQwTo89IYJnMaYkFE9ZzNbQkGQJiRNO5fqqJ3iAtrx_wpiLlIlNNGCcEyEwG6LTcecmldF1tLDuuaztInJg7KSp2so20aJqpxE7H93dRaV10bgGeIXoSvs2UK2dve2gjVLXHnaX7zZ6vLx4GF3Ht_dXN6Oz29jwlLcxx6CNoUBLSjJZBhci41oWErjIGS91mheZNABQBJNCFEWWEi1NQXNBc0jYNjrpdeddPoPCQNM6Xau5q2bavSmrK_V70lRTNbGvKhOZTAUPAodLAWdfOvCtmlXeQF3rBmznFRUJ4xRzRgJ68Ad9sp1rwnmBkokUOJUfgrSnjLPeOyhXZghWH_moPh8V8lGf-SgWlvZ_nrFa-QokAKwHfBg1E3Dff_8j-w6kD5vA</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Zhang, Bokai</creator><creator>Ghanem, Amer</creator><creator>Simes, Alexander</creator><creator>Choi, Henry</creator><creator>Yoo, Andrew</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1906-2116</orcidid></search><sort><creationdate>20211101</creationdate><title>Surgical workflow recognition with 3DCNN for Sleeve Gastrectomy</title><author>Zhang, Bokai ; Ghanem, Amer ; Simes, Alexander ; Choi, Henry ; Yoo, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-40eacc2e2f2189f735584a9d9e45b34fa7bd89ceeed04555dd871a9cd2b52be63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Filtration</topic><topic>Gastrectomy</topic><topic>Gastrointestinal surgery</topic><topic>Health Informatics</topic><topic>Humans</topic><topic>Imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Original</topic><topic>Original Article</topic><topic>Pattern Recognition and Graphics</topic><topic>Phase transitions</topic><topic>Radiology</topic><topic>Recognition</topic><topic>Recurrent neural networks</topic><topic>Surgery</topic><topic>Surgery, Computer-Assisted</topic><topic>Vision</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Bokai</creatorcontrib><creatorcontrib>Ghanem, Amer</creatorcontrib><creatorcontrib>Simes, Alexander</creatorcontrib><creatorcontrib>Choi, Henry</creatorcontrib><creatorcontrib>Yoo, Andrew</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal for computer assisted radiology and surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Bokai</au><au>Ghanem, Amer</au><au>Simes, Alexander</au><au>Choi, Henry</au><au>Yoo, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surgical workflow recognition with 3DCNN for Sleeve Gastrectomy</atitle><jtitle>International journal for computer assisted radiology and surgery</jtitle><stitle>Int J CARS</stitle><addtitle>Int J Comput Assist Radiol Surg</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>16</volume><issue>11</issue><spage>2029</spage><epage>2036</epage><pages>2029-2036</pages><issn>1861-6410</issn><eissn>1861-6429</eissn><abstract>Purpose Surgical workflow recognition is a crucial and challenging problem when building a computer-assisted surgery system. Current techniques focus on utilizing a convolutional neural network and a recurrent neural network (CNN–RNN) to solve the surgical workflow recognition problem. In this paper, we attempt to use a deep 3DCNN to solve this problem. Methods In order to tackle the surgical workflow recognition problem and the imbalanced data problem, we implement a 3DCNN workflow referred to as I3D-FL-PKF. We utilize focal loss (FL) to train a 3DCNN architecture known as Inflated 3D ConvNet (I3D) for surgical workflow recognition. We use prior knowledge filtering (PKF) to filter the recognition results. Results We evaluate our proposed workflow on a large sleeve gastrectomy surgical video dataset. We show that focal loss can help to address the imbalanced data problem. We show that our PKF can be used to generate smoothed prediction results and improve the overall accuracy. We show that the proposed workflow achieves 84.16% frame-level accuracy and reaches a weighted Jaccard score of 0.7327 which outperforms traditional CNN–RNN design. Conclusion The proposed workflow can obtain consistent and smooth predictions not only within the surgical phases but also for phase transitions. By utilizing focal loss and prior knowledge filtering, our implementation of deep 3DCNN has great potential to solve surgical workflow recognition problems for clinical practice.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>34415503</pmid><doi>10.1007/s11548-021-02473-3</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1906-2116</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1861-6410
ispartof International journal for computer assisted radiology and surgery, 2021-11, Vol.16 (11), p.2029-2036
issn 1861-6410
1861-6429
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8589754
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Artificial neural networks
Computer Imaging
Computer Science
Filtration
Gastrectomy
Gastrointestinal surgery
Health Informatics
Humans
Imaging
Medicine
Medicine & Public Health
Neural networks
Neural Networks, Computer
Original
Original Article
Pattern Recognition and Graphics
Phase transitions
Radiology
Recognition
Recurrent neural networks
Surgery
Surgery, Computer-Assisted
Vision
Workflow
title Surgical workflow recognition with 3DCNN for Sleeve Gastrectomy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surgical%20workflow%20recognition%20with%203DCNN%20for%20Sleeve%20Gastrectomy&rft.jtitle=International%20journal%20for%20computer%20assisted%20radiology%20and%20surgery&rft.au=Zhang,%20Bokai&rft.date=2021-11-01&rft.volume=16&rft.issue=11&rft.spage=2029&rft.epage=2036&rft.pages=2029-2036&rft.issn=1861-6410&rft.eissn=1861-6429&rft_id=info:doi/10.1007/s11548-021-02473-3&rft_dat=%3Cproquest_pubme%3E2563420431%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596950794&rft_id=info:pmid/34415503&rfr_iscdi=true