The Role of the Activator Additives Introduction Method in the Cold Sintering Process of ZnO Ceramics: CSP/SPS Approach

The great prospects for introducing the cold sintering process (CSP) into industry determine the importance of finding approaches to reduce the processing time and mechanical pressure required to obtain dense ceramics using CSP. The introducing zinc acetate into the initial ZnO powder of methods, su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-11, Vol.14 (21), p.6680
Hauptverfasser: Ivakin, Yurii D., Smirnov, Andrey V., Kurmysheva, Alexandra Yu, Kharlanov, Andrey N., Solís Pinargote, Nestor Washington, Smirnov, Anton, Grigoriev, Sergey N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page 6680
container_title Materials
container_volume 14
creator Ivakin, Yurii D.
Smirnov, Andrey V.
Kurmysheva, Alexandra Yu
Kharlanov, Andrey N.
Solís Pinargote, Nestor Washington
Smirnov, Anton
Grigoriev, Sergey N.
description The great prospects for introducing the cold sintering process (CSP) into industry determine the importance of finding approaches to reduce the processing time and mechanical pressure required to obtain dense ceramics using CSP. The introducing zinc acetate into the initial ZnO powder of methods, such as impregnation, thermovapor autoclave treatment (TVT), and direct injection of an aqueous solution into a die followed by cold sintering process using a spark plasma sintering unit, was studied. The effect of the introduction methods on the density and grain size of sintered ceramics was analyzed using SEM, dynamic light scattering, IR spectroscopy, and XRD. The impregnation method provides sintered samples with high relative density (over 0.90) and significant grain growth when sintered at 250 °C with a high heating rate of 100 °C/min, under a uniaxial pressure of 80 MPa in a vacuum, and a short isothermic dwell time (5 min). The TVT and aqueous solution direct injection methods showed lower relative densities (0.87 and 0.76, respectively) of CSP ZnO samples. Finally, the development of ideas about the processes occurring in an aqueous medium with CSP and TVT, which are subject to mechanical pressure, is presented.
doi_str_mv 10.3390/ma14216680
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8587942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597487731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-3784fbf1c830fb323ad1e3968bb279239656ffe5574303e42e7079ce027762953</originalsourceid><addsrcrecordid>eNpdkV9LHDEUxUOxVLG-9BMEfCnC1vybSdKHwjJYK1hcXH3pS8hk7riRmWSbzCj99mar1Lb35R64Pw7ncBH6QMknzjU5HS0VjNa1Im_QAdW6XlAtxN5feh8d5XxPynBOFdPv0D4XUjJGxAF6vNkAvo4D4Njjqeilm_yDnWLCy67zRUPGF2FKsZvLJQb8HaZN7LAPv_EmDh1e-zBB8uEOr1J0kPPO7Ee4wg0kO3qXP-NmvTpdr9Z4ud2maN3mPXrb2yHD0cs-RLdfz26ab4vLq_OLZnm5cFzxacGlEn3bU6c46VvOuO0ocF2rtmVSs6Kquu-hqqTghINgIInUDgiTsma64ofoy7Pvdm5H6ByUKnYw2-RHm36ZaL359xL8xtzFB6MqJbVgxeDji0GKP2fIkxl9djAMNkCcs2GVlkJJyWlBj_9D7-OcQqm3o2pSlbCqUCfPlEsx5wT9nzCUmN1LzetL-RMdjpCu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596056568</pqid></control><display><type>article</type><title>The Role of the Activator Additives Introduction Method in the Cold Sintering Process of ZnO Ceramics: CSP/SPS Approach</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ivakin, Yurii D. ; Smirnov, Andrey V. ; Kurmysheva, Alexandra Yu ; Kharlanov, Andrey N. ; Solís Pinargote, Nestor Washington ; Smirnov, Anton ; Grigoriev, Sergey N.</creator><creatorcontrib>Ivakin, Yurii D. ; Smirnov, Andrey V. ; Kurmysheva, Alexandra Yu ; Kharlanov, Andrey N. ; Solís Pinargote, Nestor Washington ; Smirnov, Anton ; Grigoriev, Sergey N.</creatorcontrib><description>The great prospects for introducing the cold sintering process (CSP) into industry determine the importance of finding approaches to reduce the processing time and mechanical pressure required to obtain dense ceramics using CSP. The introducing zinc acetate into the initial ZnO powder of methods, such as impregnation, thermovapor autoclave treatment (TVT), and direct injection of an aqueous solution into a die followed by cold sintering process using a spark plasma sintering unit, was studied. The effect of the introduction methods on the density and grain size of sintered ceramics was analyzed using SEM, dynamic light scattering, IR spectroscopy, and XRD. The impregnation method provides sintered samples with high relative density (over 0.90) and significant grain growth when sintered at 250 °C with a high heating rate of 100 °C/min, under a uniaxial pressure of 80 MPa in a vacuum, and a short isothermic dwell time (5 min). The TVT and aqueous solution direct injection methods showed lower relative densities (0.87 and 0.76, respectively) of CSP ZnO samples. Finally, the development of ideas about the processes occurring in an aqueous medium with CSP and TVT, which are subject to mechanical pressure, is presented.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14216680</identifier><identifier>PMID: 34772204</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Additives ; Aqueous solutions ; Ceramics ; Cold ; Cold pressing ; Cold sintering ; Crystal structure ; Density ; Dwell time ; Energy consumption ; Grain boundaries ; Grain growth ; Grain size ; Heating rate ; Hot pressing ; Impregnation ; Infrared spectroscopy ; Methods ; Photon correlation spectroscopy ; Plasma sintering ; Sintering (powder metallurgy) ; Spark plasma sintering ; Zinc acetate ; Zinc oxide</subject><ispartof>Materials, 2021-11, Vol.14 (21), p.6680</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-3784fbf1c830fb323ad1e3968bb279239656ffe5574303e42e7079ce027762953</citedby><cites>FETCH-LOGICAL-c383t-3784fbf1c830fb323ad1e3968bb279239656ffe5574303e42e7079ce027762953</cites><orcidid>0000-0002-3350-8383 ; 0000-0002-8239-5354 ; 0000-0002-7970-2595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587942/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587942/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Ivakin, Yurii D.</creatorcontrib><creatorcontrib>Smirnov, Andrey V.</creatorcontrib><creatorcontrib>Kurmysheva, Alexandra Yu</creatorcontrib><creatorcontrib>Kharlanov, Andrey N.</creatorcontrib><creatorcontrib>Solís Pinargote, Nestor Washington</creatorcontrib><creatorcontrib>Smirnov, Anton</creatorcontrib><creatorcontrib>Grigoriev, Sergey N.</creatorcontrib><title>The Role of the Activator Additives Introduction Method in the Cold Sintering Process of ZnO Ceramics: CSP/SPS Approach</title><title>Materials</title><description>The great prospects for introducing the cold sintering process (CSP) into industry determine the importance of finding approaches to reduce the processing time and mechanical pressure required to obtain dense ceramics using CSP. The introducing zinc acetate into the initial ZnO powder of methods, such as impregnation, thermovapor autoclave treatment (TVT), and direct injection of an aqueous solution into a die followed by cold sintering process using a spark plasma sintering unit, was studied. The effect of the introduction methods on the density and grain size of sintered ceramics was analyzed using SEM, dynamic light scattering, IR spectroscopy, and XRD. The impregnation method provides sintered samples with high relative density (over 0.90) and significant grain growth when sintered at 250 °C with a high heating rate of 100 °C/min, under a uniaxial pressure of 80 MPa in a vacuum, and a short isothermic dwell time (5 min). The TVT and aqueous solution direct injection methods showed lower relative densities (0.87 and 0.76, respectively) of CSP ZnO samples. Finally, the development of ideas about the processes occurring in an aqueous medium with CSP and TVT, which are subject to mechanical pressure, is presented.</description><subject>Additives</subject><subject>Aqueous solutions</subject><subject>Ceramics</subject><subject>Cold</subject><subject>Cold pressing</subject><subject>Cold sintering</subject><subject>Crystal structure</subject><subject>Density</subject><subject>Dwell time</subject><subject>Energy consumption</subject><subject>Grain boundaries</subject><subject>Grain growth</subject><subject>Grain size</subject><subject>Heating rate</subject><subject>Hot pressing</subject><subject>Impregnation</subject><subject>Infrared spectroscopy</subject><subject>Methods</subject><subject>Photon correlation spectroscopy</subject><subject>Plasma sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Spark plasma sintering</subject><subject>Zinc acetate</subject><subject>Zinc oxide</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkV9LHDEUxUOxVLG-9BMEfCnC1vybSdKHwjJYK1hcXH3pS8hk7riRmWSbzCj99mar1Lb35R64Pw7ncBH6QMknzjU5HS0VjNa1Im_QAdW6XlAtxN5feh8d5XxPynBOFdPv0D4XUjJGxAF6vNkAvo4D4Njjqeilm_yDnWLCy67zRUPGF2FKsZvLJQb8HaZN7LAPv_EmDh1e-zBB8uEOr1J0kPPO7Ee4wg0kO3qXP-NmvTpdr9Z4ud2maN3mPXrb2yHD0cs-RLdfz26ab4vLq_OLZnm5cFzxacGlEn3bU6c46VvOuO0ocF2rtmVSs6Kquu-hqqTghINgIInUDgiTsma64ofoy7Pvdm5H6ByUKnYw2-RHm36ZaL359xL8xtzFB6MqJbVgxeDji0GKP2fIkxl9djAMNkCcs2GVlkJJyWlBj_9D7-OcQqm3o2pSlbCqUCfPlEsx5wT9nzCUmN1LzetL-RMdjpCu</recordid><startdate>20211105</startdate><enddate>20211105</enddate><creator>Ivakin, Yurii D.</creator><creator>Smirnov, Andrey V.</creator><creator>Kurmysheva, Alexandra Yu</creator><creator>Kharlanov, Andrey N.</creator><creator>Solís Pinargote, Nestor Washington</creator><creator>Smirnov, Anton</creator><creator>Grigoriev, Sergey N.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3350-8383</orcidid><orcidid>https://orcid.org/0000-0002-8239-5354</orcidid><orcidid>https://orcid.org/0000-0002-7970-2595</orcidid></search><sort><creationdate>20211105</creationdate><title>The Role of the Activator Additives Introduction Method in the Cold Sintering Process of ZnO Ceramics: CSP/SPS Approach</title><author>Ivakin, Yurii D. ; Smirnov, Andrey V. ; Kurmysheva, Alexandra Yu ; Kharlanov, Andrey N. ; Solís Pinargote, Nestor Washington ; Smirnov, Anton ; Grigoriev, Sergey N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-3784fbf1c830fb323ad1e3968bb279239656ffe5574303e42e7079ce027762953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additives</topic><topic>Aqueous solutions</topic><topic>Ceramics</topic><topic>Cold</topic><topic>Cold pressing</topic><topic>Cold sintering</topic><topic>Crystal structure</topic><topic>Density</topic><topic>Dwell time</topic><topic>Energy consumption</topic><topic>Grain boundaries</topic><topic>Grain growth</topic><topic>Grain size</topic><topic>Heating rate</topic><topic>Hot pressing</topic><topic>Impregnation</topic><topic>Infrared spectroscopy</topic><topic>Methods</topic><topic>Photon correlation spectroscopy</topic><topic>Plasma sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Spark plasma sintering</topic><topic>Zinc acetate</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivakin, Yurii D.</creatorcontrib><creatorcontrib>Smirnov, Andrey V.</creatorcontrib><creatorcontrib>Kurmysheva, Alexandra Yu</creatorcontrib><creatorcontrib>Kharlanov, Andrey N.</creatorcontrib><creatorcontrib>Solís Pinargote, Nestor Washington</creatorcontrib><creatorcontrib>Smirnov, Anton</creatorcontrib><creatorcontrib>Grigoriev, Sergey N.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivakin, Yurii D.</au><au>Smirnov, Andrey V.</au><au>Kurmysheva, Alexandra Yu</au><au>Kharlanov, Andrey N.</au><au>Solís Pinargote, Nestor Washington</au><au>Smirnov, Anton</au><au>Grigoriev, Sergey N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of the Activator Additives Introduction Method in the Cold Sintering Process of ZnO Ceramics: CSP/SPS Approach</atitle><jtitle>Materials</jtitle><date>2021-11-05</date><risdate>2021</risdate><volume>14</volume><issue>21</issue><spage>6680</spage><pages>6680-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The great prospects for introducing the cold sintering process (CSP) into industry determine the importance of finding approaches to reduce the processing time and mechanical pressure required to obtain dense ceramics using CSP. The introducing zinc acetate into the initial ZnO powder of methods, such as impregnation, thermovapor autoclave treatment (TVT), and direct injection of an aqueous solution into a die followed by cold sintering process using a spark plasma sintering unit, was studied. The effect of the introduction methods on the density and grain size of sintered ceramics was analyzed using SEM, dynamic light scattering, IR spectroscopy, and XRD. The impregnation method provides sintered samples with high relative density (over 0.90) and significant grain growth when sintered at 250 °C with a high heating rate of 100 °C/min, under a uniaxial pressure of 80 MPa in a vacuum, and a short isothermic dwell time (5 min). The TVT and aqueous solution direct injection methods showed lower relative densities (0.87 and 0.76, respectively) of CSP ZnO samples. Finally, the development of ideas about the processes occurring in an aqueous medium with CSP and TVT, which are subject to mechanical pressure, is presented.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34772204</pmid><doi>10.3390/ma14216680</doi><orcidid>https://orcid.org/0000-0002-3350-8383</orcidid><orcidid>https://orcid.org/0000-0002-8239-5354</orcidid><orcidid>https://orcid.org/0000-0002-7970-2595</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-11, Vol.14 (21), p.6680
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8587942
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Additives
Aqueous solutions
Ceramics
Cold
Cold pressing
Cold sintering
Crystal structure
Density
Dwell time
Energy consumption
Grain boundaries
Grain growth
Grain size
Heating rate
Hot pressing
Impregnation
Infrared spectroscopy
Methods
Photon correlation spectroscopy
Plasma sintering
Sintering (powder metallurgy)
Spark plasma sintering
Zinc acetate
Zinc oxide
title The Role of the Activator Additives Introduction Method in the Cold Sintering Process of ZnO Ceramics: CSP/SPS Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A48%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20the%20Activator%20Additives%20Introduction%20Method%20in%20the%20Cold%20Sintering%20Process%20of%20ZnO%20Ceramics:%20CSP/SPS%20Approach&rft.jtitle=Materials&rft.au=Ivakin,%20Yurii%20D.&rft.date=2021-11-05&rft.volume=14&rft.issue=21&rft.spage=6680&rft.pages=6680-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14216680&rft_dat=%3Cproquest_pubme%3E2597487731%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596056568&rft_id=info:pmid/34772204&rfr_iscdi=true