A New Variance-Covariance Matrix for Improving Positioning Accuracy in High-Speed GPS Receivers

One of the main challenges in using GPS is reducing the positioning accuracy in high-speed conditions. In this contribution, by considering the effect of spatial correlation between observations in estimating the covariances, we propose a model for determining the variance-covariance matrix (VCM) th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-11, Vol.21 (21), p.7324, Article 7324
Hauptverfasser: Rahemi, Narjes, Mosavi, Mohammad Reza, Martin, Diego
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the main challenges in using GPS is reducing the positioning accuracy in high-speed conditions. In this contribution, by considering the effect of spatial correlation between observations in estimating the covariances, we propose a model for determining the variance-covariance matrix (VCM) that improves the positioning accuracy without increasing the computational load. In addition, we compare the performance of the extended Kalman filter (EKF) and unscented Kalman filter (UKF) combined with different dynamic models, along with the proposed VCM in GPS positioning at high speeds. To review and test the methods, we used six motion scenarios with different speeds from medium to high and examined the positioning accuracy of the methods and some of their statistical characteristics. The simulation results demonstrate that the EKF algorithm based on the Gauss-Markov model, along with the proposed VCM (based on the sinusoidal function and considering spatial correlations), performs better and provides at least 30% improvement in the positioning, compared to the other methods.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21217324