Cohort and Trajectory Analysis in Multi-Agent Support Systems for Cancer Survivors

In the past decades, the incidence rate of cancer has steadily risen. Although advances in early and accurate detection have increased cancer survival chances, these patients must cope with physical and psychological sequelae. The lack of personalized support and assistance after discharge may lead...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical systems 2021-12, Vol.45 (12), p.109, Article 109
Hauptverfasser: Manzo, Gaetano, Calvaresi, Davide, Jimenez-del-Toro, Oscar, Calbimonte, Jean-Paul, Schumacher, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 109
container_title Journal of medical systems
container_volume 45
creator Manzo, Gaetano
Calvaresi, Davide
Jimenez-del-Toro, Oscar
Calbimonte, Jean-Paul
Schumacher, Michael
description In the past decades, the incidence rate of cancer has steadily risen. Although advances in early and accurate detection have increased cancer survival chances, these patients must cope with physical and psychological sequelae. The lack of personalized support and assistance after discharge may lead to a rapid diminution of their physical abilities, cognitive impairment, and reduced quality of life. This paper proposes a personalized support system for cancer survivors based on a cohort and trajectory analysis (CTA) module integrated within an agent-based personalized chatbot named EREBOTS. The CTA module relies on survival estimation models, machine learning, and deep learning techniques. It provides clinicians with supporting evidence for choosing a personalized treatment, while allowing patients to benefit from tailored suggestions adapted to their conditions and trajectories. The development of the CTA within the EREBOTS framework enables to effectively evaluate the significance of prognostic variables, detect patient’s high-risk markers, and support treatment decisions.
doi_str_mv 10.1007/s10916-021-01770-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8585846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596178818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-f7d69272d11bb8a52cb953ca4af6cdbafe3cd9741e5dcb6b0db226b3a608f77b3</originalsourceid><addsrcrecordid>eNp9kUlrwzAQhUVpadLlD_RQDL30olaLLcmXQgjdIKXQBXoTkiwnDo6VSnYg_77K0vVQ5jCH982bkR4AJxhdYIT4ZcAoxwwigiHCnCNId0AfZ5xCJvK3XdBHOBUwy3LRAwchTBFCOWN8H_RoyhkjJO-Dp6GbON8mqimSF6-m1rTOL5NBo-plqEJSNclDV7cVHIxt0ybP3Xy-wp-XobWzkJTOJ0PVGOuj5BfVwvlwBPZKVQd7vO2H4PXm-mV4B0ePt_fDwQialKctLHnBcsJJgbHWQmXE6DyjRqWqZKbQqrTUFDlPsc0Ko5lGhSaEaaoYEiXnmh6Cq43vvNMzW5h4n1e1nPtqpvxSOlXJ30pTTeTYLaTIYqUsGpxvDbx772xo5awKxta1aqzrgiRZXC8ESXFEz_6gU9f5-ElrimEuBBaRIhvKeBeCt-XXMRjJVWRyE5mMkcl1ZJLGodOfz_ga-cwoAnQDhCg1Y-u_d_9j-wHkXaPW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596178818</pqid></control><display><type>article</type><title>Cohort and Trajectory Analysis in Multi-Agent Support Systems for Cancer Survivors</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Manzo, Gaetano ; Calvaresi, Davide ; Jimenez-del-Toro, Oscar ; Calbimonte, Jean-Paul ; Schumacher, Michael</creator><creatorcontrib>Manzo, Gaetano ; Calvaresi, Davide ; Jimenez-del-Toro, Oscar ; Calbimonte, Jean-Paul ; Schumacher, Michael</creatorcontrib><description>In the past decades, the incidence rate of cancer has steadily risen. Although advances in early and accurate detection have increased cancer survival chances, these patients must cope with physical and psychological sequelae. The lack of personalized support and assistance after discharge may lead to a rapid diminution of their physical abilities, cognitive impairment, and reduced quality of life. This paper proposes a personalized support system for cancer survivors based on a cohort and trajectory analysis (CTA) module integrated within an agent-based personalized chatbot named EREBOTS. The CTA module relies on survival estimation models, machine learning, and deep learning techniques. It provides clinicians with supporting evidence for choosing a personalized treatment, while allowing patients to benefit from tailored suggestions adapted to their conditions and trajectories. The development of the CTA within the EREBOTS framework enables to effectively evaluate the significance of prognostic variables, detect patient’s high-risk markers, and support treatment decisions.</description><identifier>ISSN: 0148-5598</identifier><identifier>ISSN: 1573-689X</identifier><identifier>EISSN: 1573-689X</identifier><identifier>DOI: 10.1007/s10916-021-01770-3</identifier><identifier>PMID: 34766229</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptation, Psychological ; Cancer ; Cancer Survivors ; Cognitive ability ; Cognitive Agents for Smart Health ; Cohort analysis ; Cohort Studies ; Complications ; Customization ; Deep learning ; Health Informatics ; Health Sciences ; Humans ; Learning algorithms ; Machine learning ; Medicine ; Medicine &amp; Public Health ; Modules ; Multiagent systems ; Neoplasms - epidemiology ; Neoplasms - therapy ; Patient Facing Systems ; Patients ; Quality of Life ; Statistics for Life Sciences ; Support systems ; Survival ; Trajectory analysis</subject><ispartof>Journal of medical systems, 2021-12, Vol.45 (12), p.109, Article 109</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-f7d69272d11bb8a52cb953ca4af6cdbafe3cd9741e5dcb6b0db226b3a608f77b3</citedby><cites>FETCH-LOGICAL-c474t-f7d69272d11bb8a52cb953ca4af6cdbafe3cd9741e5dcb6b0db226b3a608f77b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10916-021-01770-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10916-021-01770-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34766229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Manzo, Gaetano</creatorcontrib><creatorcontrib>Calvaresi, Davide</creatorcontrib><creatorcontrib>Jimenez-del-Toro, Oscar</creatorcontrib><creatorcontrib>Calbimonte, Jean-Paul</creatorcontrib><creatorcontrib>Schumacher, Michael</creatorcontrib><title>Cohort and Trajectory Analysis in Multi-Agent Support Systems for Cancer Survivors</title><title>Journal of medical systems</title><addtitle>J Med Syst</addtitle><addtitle>J Med Syst</addtitle><description>In the past decades, the incidence rate of cancer has steadily risen. Although advances in early and accurate detection have increased cancer survival chances, these patients must cope with physical and psychological sequelae. The lack of personalized support and assistance after discharge may lead to a rapid diminution of their physical abilities, cognitive impairment, and reduced quality of life. This paper proposes a personalized support system for cancer survivors based on a cohort and trajectory analysis (CTA) module integrated within an agent-based personalized chatbot named EREBOTS. The CTA module relies on survival estimation models, machine learning, and deep learning techniques. It provides clinicians with supporting evidence for choosing a personalized treatment, while allowing patients to benefit from tailored suggestions adapted to their conditions and trajectories. The development of the CTA within the EREBOTS framework enables to effectively evaluate the significance of prognostic variables, detect patient’s high-risk markers, and support treatment decisions.</description><subject>Adaptation, Psychological</subject><subject>Cancer</subject><subject>Cancer Survivors</subject><subject>Cognitive ability</subject><subject>Cognitive Agents for Smart Health</subject><subject>Cohort analysis</subject><subject>Cohort Studies</subject><subject>Complications</subject><subject>Customization</subject><subject>Deep learning</subject><subject>Health Informatics</subject><subject>Health Sciences</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Modules</subject><subject>Multiagent systems</subject><subject>Neoplasms - epidemiology</subject><subject>Neoplasms - therapy</subject><subject>Patient Facing Systems</subject><subject>Patients</subject><subject>Quality of Life</subject><subject>Statistics for Life Sciences</subject><subject>Support systems</subject><subject>Survival</subject><subject>Trajectory analysis</subject><issn>0148-5598</issn><issn>1573-689X</issn><issn>1573-689X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUlrwzAQhUVpadLlD_RQDL30olaLLcmXQgjdIKXQBXoTkiwnDo6VSnYg_77K0vVQ5jCH982bkR4AJxhdYIT4ZcAoxwwigiHCnCNId0AfZ5xCJvK3XdBHOBUwy3LRAwchTBFCOWN8H_RoyhkjJO-Dp6GbON8mqimSF6-m1rTOL5NBo-plqEJSNclDV7cVHIxt0ybP3Xy-wp-XobWzkJTOJ0PVGOuj5BfVwvlwBPZKVQd7vO2H4PXm-mV4B0ePt_fDwQialKctLHnBcsJJgbHWQmXE6DyjRqWqZKbQqrTUFDlPsc0Ko5lGhSaEaaoYEiXnmh6Cq43vvNMzW5h4n1e1nPtqpvxSOlXJ30pTTeTYLaTIYqUsGpxvDbx772xo5awKxta1aqzrgiRZXC8ESXFEz_6gU9f5-ElrimEuBBaRIhvKeBeCt-XXMRjJVWRyE5mMkcl1ZJLGodOfz_ga-cwoAnQDhCg1Y-u_d_9j-wHkXaPW</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Manzo, Gaetano</creator><creator>Calvaresi, Davide</creator><creator>Jimenez-del-Toro, Oscar</creator><creator>Calbimonte, Jean-Paul</creator><creator>Schumacher, Michael</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7RV</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20211201</creationdate><title>Cohort and Trajectory Analysis in Multi-Agent Support Systems for Cancer Survivors</title><author>Manzo, Gaetano ; Calvaresi, Davide ; Jimenez-del-Toro, Oscar ; Calbimonte, Jean-Paul ; Schumacher, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-f7d69272d11bb8a52cb953ca4af6cdbafe3cd9741e5dcb6b0db226b3a608f77b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation, Psychological</topic><topic>Cancer</topic><topic>Cancer Survivors</topic><topic>Cognitive ability</topic><topic>Cognitive Agents for Smart Health</topic><topic>Cohort analysis</topic><topic>Cohort Studies</topic><topic>Complications</topic><topic>Customization</topic><topic>Deep learning</topic><topic>Health Informatics</topic><topic>Health Sciences</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Modules</topic><topic>Multiagent systems</topic><topic>Neoplasms - epidemiology</topic><topic>Neoplasms - therapy</topic><topic>Patient Facing Systems</topic><topic>Patients</topic><topic>Quality of Life</topic><topic>Statistics for Life Sciences</topic><topic>Support systems</topic><topic>Survival</topic><topic>Trajectory analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manzo, Gaetano</creatorcontrib><creatorcontrib>Calvaresi, Davide</creatorcontrib><creatorcontrib>Jimenez-del-Toro, Oscar</creatorcontrib><creatorcontrib>Calbimonte, Jean-Paul</creatorcontrib><creatorcontrib>Schumacher, Michael</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of medical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manzo, Gaetano</au><au>Calvaresi, Davide</au><au>Jimenez-del-Toro, Oscar</au><au>Calbimonte, Jean-Paul</au><au>Schumacher, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cohort and Trajectory Analysis in Multi-Agent Support Systems for Cancer Survivors</atitle><jtitle>Journal of medical systems</jtitle><stitle>J Med Syst</stitle><addtitle>J Med Syst</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>45</volume><issue>12</issue><spage>109</spage><pages>109-</pages><artnum>109</artnum><issn>0148-5598</issn><issn>1573-689X</issn><eissn>1573-689X</eissn><abstract>In the past decades, the incidence rate of cancer has steadily risen. Although advances in early and accurate detection have increased cancer survival chances, these patients must cope with physical and psychological sequelae. The lack of personalized support and assistance after discharge may lead to a rapid diminution of their physical abilities, cognitive impairment, and reduced quality of life. This paper proposes a personalized support system for cancer survivors based on a cohort and trajectory analysis (CTA) module integrated within an agent-based personalized chatbot named EREBOTS. The CTA module relies on survival estimation models, machine learning, and deep learning techniques. It provides clinicians with supporting evidence for choosing a personalized treatment, while allowing patients to benefit from tailored suggestions adapted to their conditions and trajectories. The development of the CTA within the EREBOTS framework enables to effectively evaluate the significance of prognostic variables, detect patient’s high-risk markers, and support treatment decisions.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>34766229</pmid><doi>10.1007/s10916-021-01770-3</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-5598
ispartof Journal of medical systems, 2021-12, Vol.45 (12), p.109, Article 109
issn 0148-5598
1573-689X
1573-689X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8585846
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Adaptation, Psychological
Cancer
Cancer Survivors
Cognitive ability
Cognitive Agents for Smart Health
Cohort analysis
Cohort Studies
Complications
Customization
Deep learning
Health Informatics
Health Sciences
Humans
Learning algorithms
Machine learning
Medicine
Medicine & Public Health
Modules
Multiagent systems
Neoplasms - epidemiology
Neoplasms - therapy
Patient Facing Systems
Patients
Quality of Life
Statistics for Life Sciences
Support systems
Survival
Trajectory analysis
title Cohort and Trajectory Analysis in Multi-Agent Support Systems for Cancer Survivors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A16%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cohort%20and%20Trajectory%20Analysis%20in%20Multi-Agent%20Support%20Systems%20for%20Cancer%20Survivors&rft.jtitle=Journal%20of%20medical%20systems&rft.au=Manzo,%20Gaetano&rft.date=2021-12-01&rft.volume=45&rft.issue=12&rft.spage=109&rft.pages=109-&rft.artnum=109&rft.issn=0148-5598&rft.eissn=1573-689X&rft_id=info:doi/10.1007/s10916-021-01770-3&rft_dat=%3Cproquest_pubme%3E2596178818%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596178818&rft_id=info:pmid/34766229&rfr_iscdi=true