Cohort and Trajectory Analysis in Multi-Agent Support Systems for Cancer Survivors
In the past decades, the incidence rate of cancer has steadily risen. Although advances in early and accurate detection have increased cancer survival chances, these patients must cope with physical and psychological sequelae. The lack of personalized support and assistance after discharge may lead...
Gespeichert in:
Veröffentlicht in: | Journal of medical systems 2021-12, Vol.45 (12), p.109, Article 109 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 109 |
container_title | Journal of medical systems |
container_volume | 45 |
creator | Manzo, Gaetano Calvaresi, Davide Jimenez-del-Toro, Oscar Calbimonte, Jean-Paul Schumacher, Michael |
description | In the past decades, the incidence rate of cancer has steadily risen. Although advances in early and accurate detection have increased cancer survival chances, these patients must cope with physical and psychological sequelae. The lack of personalized support and assistance after discharge may lead to a rapid diminution of their physical abilities, cognitive impairment, and reduced quality of life. This paper proposes a personalized support system for cancer survivors based on a cohort and trajectory analysis (CTA) module integrated within an agent-based personalized chatbot named EREBOTS. The CTA module relies on survival estimation models, machine learning, and deep learning techniques. It provides clinicians with supporting evidence for choosing a personalized treatment, while allowing patients to benefit from tailored suggestions adapted to their conditions and trajectories. The development of the CTA within the EREBOTS framework enables to effectively evaluate the significance of prognostic variables, detect patient’s high-risk markers, and support treatment decisions. |
doi_str_mv | 10.1007/s10916-021-01770-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8585846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596178818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-f7d69272d11bb8a52cb953ca4af6cdbafe3cd9741e5dcb6b0db226b3a608f77b3</originalsourceid><addsrcrecordid>eNp9kUlrwzAQhUVpadLlD_RQDL30olaLLcmXQgjdIKXQBXoTkiwnDo6VSnYg_77K0vVQ5jCH982bkR4AJxhdYIT4ZcAoxwwigiHCnCNId0AfZ5xCJvK3XdBHOBUwy3LRAwchTBFCOWN8H_RoyhkjJO-Dp6GbON8mqimSF6-m1rTOL5NBo-plqEJSNclDV7cVHIxt0ybP3Xy-wp-XobWzkJTOJ0PVGOuj5BfVwvlwBPZKVQd7vO2H4PXm-mV4B0ePt_fDwQialKctLHnBcsJJgbHWQmXE6DyjRqWqZKbQqrTUFDlPsc0Ko5lGhSaEaaoYEiXnmh6Cq43vvNMzW5h4n1e1nPtqpvxSOlXJ30pTTeTYLaTIYqUsGpxvDbx772xo5awKxta1aqzrgiRZXC8ESXFEz_6gU9f5-ElrimEuBBaRIhvKeBeCt-XXMRjJVWRyE5mMkcl1ZJLGodOfz_ga-cwoAnQDhCg1Y-u_d_9j-wHkXaPW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596178818</pqid></control><display><type>article</type><title>Cohort and Trajectory Analysis in Multi-Agent Support Systems for Cancer Survivors</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Manzo, Gaetano ; Calvaresi, Davide ; Jimenez-del-Toro, Oscar ; Calbimonte, Jean-Paul ; Schumacher, Michael</creator><creatorcontrib>Manzo, Gaetano ; Calvaresi, Davide ; Jimenez-del-Toro, Oscar ; Calbimonte, Jean-Paul ; Schumacher, Michael</creatorcontrib><description>In the past decades, the incidence rate of cancer has steadily risen. Although advances in early and accurate detection have increased cancer survival chances, these patients must cope with physical and psychological sequelae. The lack of personalized support and assistance after discharge may lead to a rapid diminution of their physical abilities, cognitive impairment, and reduced quality of life. This paper proposes a personalized support system for cancer survivors based on a cohort and trajectory analysis (CTA) module integrated within an agent-based personalized chatbot named EREBOTS. The CTA module relies on survival estimation models, machine learning, and deep learning techniques. It provides clinicians with supporting evidence for choosing a personalized treatment, while allowing patients to benefit from tailored suggestions adapted to their conditions and trajectories. The development of the CTA within the EREBOTS framework enables to effectively evaluate the significance of prognostic variables, detect patient’s high-risk markers, and support treatment decisions.</description><identifier>ISSN: 0148-5598</identifier><identifier>ISSN: 1573-689X</identifier><identifier>EISSN: 1573-689X</identifier><identifier>DOI: 10.1007/s10916-021-01770-3</identifier><identifier>PMID: 34766229</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptation, Psychological ; Cancer ; Cancer Survivors ; Cognitive ability ; Cognitive Agents for Smart Health ; Cohort analysis ; Cohort Studies ; Complications ; Customization ; Deep learning ; Health Informatics ; Health Sciences ; Humans ; Learning algorithms ; Machine learning ; Medicine ; Medicine & Public Health ; Modules ; Multiagent systems ; Neoplasms - epidemiology ; Neoplasms - therapy ; Patient Facing Systems ; Patients ; Quality of Life ; Statistics for Life Sciences ; Support systems ; Survival ; Trajectory analysis</subject><ispartof>Journal of medical systems, 2021-12, Vol.45 (12), p.109, Article 109</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-f7d69272d11bb8a52cb953ca4af6cdbafe3cd9741e5dcb6b0db226b3a608f77b3</citedby><cites>FETCH-LOGICAL-c474t-f7d69272d11bb8a52cb953ca4af6cdbafe3cd9741e5dcb6b0db226b3a608f77b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10916-021-01770-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10916-021-01770-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34766229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Manzo, Gaetano</creatorcontrib><creatorcontrib>Calvaresi, Davide</creatorcontrib><creatorcontrib>Jimenez-del-Toro, Oscar</creatorcontrib><creatorcontrib>Calbimonte, Jean-Paul</creatorcontrib><creatorcontrib>Schumacher, Michael</creatorcontrib><title>Cohort and Trajectory Analysis in Multi-Agent Support Systems for Cancer Survivors</title><title>Journal of medical systems</title><addtitle>J Med Syst</addtitle><addtitle>J Med Syst</addtitle><description>In the past decades, the incidence rate of cancer has steadily risen. Although advances in early and accurate detection have increased cancer survival chances, these patients must cope with physical and psychological sequelae. The lack of personalized support and assistance after discharge may lead to a rapid diminution of their physical abilities, cognitive impairment, and reduced quality of life. This paper proposes a personalized support system for cancer survivors based on a cohort and trajectory analysis (CTA) module integrated within an agent-based personalized chatbot named EREBOTS. The CTA module relies on survival estimation models, machine learning, and deep learning techniques. It provides clinicians with supporting evidence for choosing a personalized treatment, while allowing patients to benefit from tailored suggestions adapted to their conditions and trajectories. The development of the CTA within the EREBOTS framework enables to effectively evaluate the significance of prognostic variables, detect patient’s high-risk markers, and support treatment decisions.</description><subject>Adaptation, Psychological</subject><subject>Cancer</subject><subject>Cancer Survivors</subject><subject>Cognitive ability</subject><subject>Cognitive Agents for Smart Health</subject><subject>Cohort analysis</subject><subject>Cohort Studies</subject><subject>Complications</subject><subject>Customization</subject><subject>Deep learning</subject><subject>Health Informatics</subject><subject>Health Sciences</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Modules</subject><subject>Multiagent systems</subject><subject>Neoplasms - epidemiology</subject><subject>Neoplasms - therapy</subject><subject>Patient Facing Systems</subject><subject>Patients</subject><subject>Quality of Life</subject><subject>Statistics for Life Sciences</subject><subject>Support systems</subject><subject>Survival</subject><subject>Trajectory analysis</subject><issn>0148-5598</issn><issn>1573-689X</issn><issn>1573-689X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUlrwzAQhUVpadLlD_RQDL30olaLLcmXQgjdIKXQBXoTkiwnDo6VSnYg_77K0vVQ5jCH982bkR4AJxhdYIT4ZcAoxwwigiHCnCNId0AfZ5xCJvK3XdBHOBUwy3LRAwchTBFCOWN8H_RoyhkjJO-Dp6GbON8mqimSF6-m1rTOL5NBo-plqEJSNclDV7cVHIxt0ybP3Xy-wp-XobWzkJTOJ0PVGOuj5BfVwvlwBPZKVQd7vO2H4PXm-mV4B0ePt_fDwQialKctLHnBcsJJgbHWQmXE6DyjRqWqZKbQqrTUFDlPsc0Ko5lGhSaEaaoYEiXnmh6Cq43vvNMzW5h4n1e1nPtqpvxSOlXJ30pTTeTYLaTIYqUsGpxvDbx772xo5awKxta1aqzrgiRZXC8ESXFEz_6gU9f5-ElrimEuBBaRIhvKeBeCt-XXMRjJVWRyE5mMkcl1ZJLGodOfz_ga-cwoAnQDhCg1Y-u_d_9j-wHkXaPW</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Manzo, Gaetano</creator><creator>Calvaresi, Davide</creator><creator>Jimenez-del-Toro, Oscar</creator><creator>Calbimonte, Jean-Paul</creator><creator>Schumacher, Michael</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7RV</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20211201</creationdate><title>Cohort and Trajectory Analysis in Multi-Agent Support Systems for Cancer Survivors</title><author>Manzo, Gaetano ; Calvaresi, Davide ; Jimenez-del-Toro, Oscar ; Calbimonte, Jean-Paul ; Schumacher, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-f7d69272d11bb8a52cb953ca4af6cdbafe3cd9741e5dcb6b0db226b3a608f77b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation, Psychological</topic><topic>Cancer</topic><topic>Cancer Survivors</topic><topic>Cognitive ability</topic><topic>Cognitive Agents for Smart Health</topic><topic>Cohort analysis</topic><topic>Cohort Studies</topic><topic>Complications</topic><topic>Customization</topic><topic>Deep learning</topic><topic>Health Informatics</topic><topic>Health Sciences</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Modules</topic><topic>Multiagent systems</topic><topic>Neoplasms - epidemiology</topic><topic>Neoplasms - therapy</topic><topic>Patient Facing Systems</topic><topic>Patients</topic><topic>Quality of Life</topic><topic>Statistics for Life Sciences</topic><topic>Support systems</topic><topic>Survival</topic><topic>Trajectory analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manzo, Gaetano</creatorcontrib><creatorcontrib>Calvaresi, Davide</creatorcontrib><creatorcontrib>Jimenez-del-Toro, Oscar</creatorcontrib><creatorcontrib>Calbimonte, Jean-Paul</creatorcontrib><creatorcontrib>Schumacher, Michael</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of medical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manzo, Gaetano</au><au>Calvaresi, Davide</au><au>Jimenez-del-Toro, Oscar</au><au>Calbimonte, Jean-Paul</au><au>Schumacher, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cohort and Trajectory Analysis in Multi-Agent Support Systems for Cancer Survivors</atitle><jtitle>Journal of medical systems</jtitle><stitle>J Med Syst</stitle><addtitle>J Med Syst</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>45</volume><issue>12</issue><spage>109</spage><pages>109-</pages><artnum>109</artnum><issn>0148-5598</issn><issn>1573-689X</issn><eissn>1573-689X</eissn><abstract>In the past decades, the incidence rate of cancer has steadily risen. Although advances in early and accurate detection have increased cancer survival chances, these patients must cope with physical and psychological sequelae. The lack of personalized support and assistance after discharge may lead to a rapid diminution of their physical abilities, cognitive impairment, and reduced quality of life. This paper proposes a personalized support system for cancer survivors based on a cohort and trajectory analysis (CTA) module integrated within an agent-based personalized chatbot named EREBOTS. The CTA module relies on survival estimation models, machine learning, and deep learning techniques. It provides clinicians with supporting evidence for choosing a personalized treatment, while allowing patients to benefit from tailored suggestions adapted to their conditions and trajectories. The development of the CTA within the EREBOTS framework enables to effectively evaluate the significance of prognostic variables, detect patient’s high-risk markers, and support treatment decisions.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>34766229</pmid><doi>10.1007/s10916-021-01770-3</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-5598 |
ispartof | Journal of medical systems, 2021-12, Vol.45 (12), p.109, Article 109 |
issn | 0148-5598 1573-689X 1573-689X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8585846 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Adaptation, Psychological Cancer Cancer Survivors Cognitive ability Cognitive Agents for Smart Health Cohort analysis Cohort Studies Complications Customization Deep learning Health Informatics Health Sciences Humans Learning algorithms Machine learning Medicine Medicine & Public Health Modules Multiagent systems Neoplasms - epidemiology Neoplasms - therapy Patient Facing Systems Patients Quality of Life Statistics for Life Sciences Support systems Survival Trajectory analysis |
title | Cohort and Trajectory Analysis in Multi-Agent Support Systems for Cancer Survivors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A16%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cohort%20and%20Trajectory%20Analysis%20in%20Multi-Agent%20Support%20Systems%20for%20Cancer%20Survivors&rft.jtitle=Journal%20of%20medical%20systems&rft.au=Manzo,%20Gaetano&rft.date=2021-12-01&rft.volume=45&rft.issue=12&rft.spage=109&rft.pages=109-&rft.artnum=109&rft.issn=0148-5598&rft.eissn=1573-689X&rft_id=info:doi/10.1007/s10916-021-01770-3&rft_dat=%3Cproquest_pubme%3E2596178818%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596178818&rft_id=info:pmid/34766229&rfr_iscdi=true |