Employing Hybrid Lennard-Jones and Axilrod-Teller Potentials to Parametrize Force Fields for the Simulation of Materials' Properties

The development of novel materials has challenges besides their synthesis. Materials such as novel MXenes are difficult to probe experimentally due to their reduced size and low stability under ambient conditions. Quantum mechanics and molecular dynamics simulations have been valuable options for ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-10, Vol.14 (21), p.6352
Hauptverfasser: Branco, Danilo de Camargo, Cheng, Gary J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page 6352
container_title Materials
container_volume 14
creator Branco, Danilo de Camargo
Cheng, Gary J
description The development of novel materials has challenges besides their synthesis. Materials such as novel MXenes are difficult to probe experimentally due to their reduced size and low stability under ambient conditions. Quantum mechanics and molecular dynamics simulations have been valuable options for material properties determination. However, computational materials scientists may still have difficulty finding specific force field models for their simulations. Force fields are usually hard to parametrize, and their parameters' determination is computationally expensive. We show the Lennard-Jones (2-body interactions) combined with the Axilrod-Teller (3-body interactions) parametrization process' applicability for metals and new classes of materials (MXenes). Because this parametrization process is simple and computationally inexpensive, it allows users to predict materials' behaviors under close-to-ambient conditions in molecular dynamics, independent of pre-existing potential files. Using the process described in this work, we have made the Ti2C parameters set available for the first time in a peer-reviewed work.
doi_str_mv 10.3390/ma14216352
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8585255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596053783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-ce034ce66faad56047c89e6d61283c3047907eb74b0e9601ec339a9d048cf883</originalsourceid><addsrcrecordid>eNpdkV1rFDEUhgex2FJ74w-QgBdKYTSZZPJxI5TSWmXFBfc-ZJMzbcpMsiYZ6fa6P9wsrbU1F_l8zptzzts0bwj-SKnCnyZDWEc47bsXzQFRirdEMfbyyX6_Ocr5GtdBKZGdetXsUyYEkUIeNHdn02aMWx8u0cV2nbxDCwjBJNd-iwEyMsGhkxs_pujaFYwjJLSMBULxZsyoRLQ0yUxQkr8FdB6TrbOH0WU0xITKFaCffppHU3wMKA7ouymQdrHv0TLFDaTiIb9u9oZ6BUcP62GzOj9bnV60ix9fvp6eLFrLMC-tBUyZBc4HY1zPMRNWKuCOk05SS-tZYQFrwdYYFMcEbO2QUQ4zaQcp6WHz-V52M68ncLZWkcyoN8lPJm11NF4_fwn-Sl_G31r2su_6vgp8eBBI8dcMuejJZ1u7YgLEOeuuV4IpJtjur3f_oddxTqFWt6M47qmQtFLH95RNMecEw2MyBOudvfqfvRV--zT9R_SvmfQPWYihnQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596053783</pqid></control><display><type>article</type><title>Employing Hybrid Lennard-Jones and Axilrod-Teller Potentials to Parametrize Force Fields for the Simulation of Materials' Properties</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Branco, Danilo de Camargo ; Cheng, Gary J</creator><creatorcontrib>Branco, Danilo de Camargo ; Cheng, Gary J</creatorcontrib><description>The development of novel materials has challenges besides their synthesis. Materials such as novel MXenes are difficult to probe experimentally due to their reduced size and low stability under ambient conditions. Quantum mechanics and molecular dynamics simulations have been valuable options for material properties determination. However, computational materials scientists may still have difficulty finding specific force field models for their simulations. Force fields are usually hard to parametrize, and their parameters' determination is computationally expensive. We show the Lennard-Jones (2-body interactions) combined with the Axilrod-Teller (3-body interactions) parametrization process' applicability for metals and new classes of materials (MXenes). Because this parametrization process is simple and computationally inexpensive, it allows users to predict materials' behaviors under close-to-ambient conditions in molecular dynamics, independent of pre-existing potential files. Using the process described in this work, we have made the Ti2C parameters set available for the first time in a peer-reviewed work.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14216352</identifier><identifier>PMID: 34771878</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Dynamic stability ; Energy ; Material properties ; Molecular dynamics ; Parameterization ; Parameters ; Quantum mechanics ; Simulation</subject><ispartof>Materials, 2021-10, Vol.14 (21), p.6352</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-ce034ce66faad56047c89e6d61283c3047907eb74b0e9601ec339a9d048cf883</citedby><cites>FETCH-LOGICAL-c406t-ce034ce66faad56047c89e6d61283c3047907eb74b0e9601ec339a9d048cf883</cites><orcidid>0000-0003-2637-6359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585255/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585255/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34771878$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Branco, Danilo de Camargo</creatorcontrib><creatorcontrib>Cheng, Gary J</creatorcontrib><title>Employing Hybrid Lennard-Jones and Axilrod-Teller Potentials to Parametrize Force Fields for the Simulation of Materials' Properties</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The development of novel materials has challenges besides their synthesis. Materials such as novel MXenes are difficult to probe experimentally due to their reduced size and low stability under ambient conditions. Quantum mechanics and molecular dynamics simulations have been valuable options for material properties determination. However, computational materials scientists may still have difficulty finding specific force field models for their simulations. Force fields are usually hard to parametrize, and their parameters' determination is computationally expensive. We show the Lennard-Jones (2-body interactions) combined with the Axilrod-Teller (3-body interactions) parametrization process' applicability for metals and new classes of materials (MXenes). Because this parametrization process is simple and computationally inexpensive, it allows users to predict materials' behaviors under close-to-ambient conditions in molecular dynamics, independent of pre-existing potential files. Using the process described in this work, we have made the Ti2C parameters set available for the first time in a peer-reviewed work.</description><subject>Dynamic stability</subject><subject>Energy</subject><subject>Material properties</subject><subject>Molecular dynamics</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Quantum mechanics</subject><subject>Simulation</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkV1rFDEUhgex2FJ74w-QgBdKYTSZZPJxI5TSWmXFBfc-ZJMzbcpMsiYZ6fa6P9wsrbU1F_l8zptzzts0bwj-SKnCnyZDWEc47bsXzQFRirdEMfbyyX6_Ocr5GtdBKZGdetXsUyYEkUIeNHdn02aMWx8u0cV2nbxDCwjBJNd-iwEyMsGhkxs_pujaFYwjJLSMBULxZsyoRLQ0yUxQkr8FdB6TrbOH0WU0xITKFaCffppHU3wMKA7ouymQdrHv0TLFDaTiIb9u9oZ6BUcP62GzOj9bnV60ix9fvp6eLFrLMC-tBUyZBc4HY1zPMRNWKuCOk05SS-tZYQFrwdYYFMcEbO2QUQ4zaQcp6WHz-V52M68ncLZWkcyoN8lPJm11NF4_fwn-Sl_G31r2su_6vgp8eBBI8dcMuejJZ1u7YgLEOeuuV4IpJtjur3f_oddxTqFWt6M47qmQtFLH95RNMecEw2MyBOudvfqfvRV--zT9R_SvmfQPWYihnQ</recordid><startdate>20211024</startdate><enddate>20211024</enddate><creator>Branco, Danilo de Camargo</creator><creator>Cheng, Gary J</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2637-6359</orcidid></search><sort><creationdate>20211024</creationdate><title>Employing Hybrid Lennard-Jones and Axilrod-Teller Potentials to Parametrize Force Fields for the Simulation of Materials' Properties</title><author>Branco, Danilo de Camargo ; Cheng, Gary J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-ce034ce66faad56047c89e6d61283c3047907eb74b0e9601ec339a9d048cf883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dynamic stability</topic><topic>Energy</topic><topic>Material properties</topic><topic>Molecular dynamics</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Quantum mechanics</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Branco, Danilo de Camargo</creatorcontrib><creatorcontrib>Cheng, Gary J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Branco, Danilo de Camargo</au><au>Cheng, Gary J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Employing Hybrid Lennard-Jones and Axilrod-Teller Potentials to Parametrize Force Fields for the Simulation of Materials' Properties</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2021-10-24</date><risdate>2021</risdate><volume>14</volume><issue>21</issue><spage>6352</spage><pages>6352-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The development of novel materials has challenges besides their synthesis. Materials such as novel MXenes are difficult to probe experimentally due to their reduced size and low stability under ambient conditions. Quantum mechanics and molecular dynamics simulations have been valuable options for material properties determination. However, computational materials scientists may still have difficulty finding specific force field models for their simulations. Force fields are usually hard to parametrize, and their parameters' determination is computationally expensive. We show the Lennard-Jones (2-body interactions) combined with the Axilrod-Teller (3-body interactions) parametrization process' applicability for metals and new classes of materials (MXenes). Because this parametrization process is simple and computationally inexpensive, it allows users to predict materials' behaviors under close-to-ambient conditions in molecular dynamics, independent of pre-existing potential files. Using the process described in this work, we have made the Ti2C parameters set available for the first time in a peer-reviewed work.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34771878</pmid><doi>10.3390/ma14216352</doi><orcidid>https://orcid.org/0000-0003-2637-6359</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-10, Vol.14 (21), p.6352
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8585255
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry
subjects Dynamic stability
Energy
Material properties
Molecular dynamics
Parameterization
Parameters
Quantum mechanics
Simulation
title Employing Hybrid Lennard-Jones and Axilrod-Teller Potentials to Parametrize Force Fields for the Simulation of Materials' Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Employing%20Hybrid%20Lennard-Jones%20and%20Axilrod-Teller%20Potentials%20to%20Parametrize%20Force%20Fields%20for%20the%20Simulation%20of%20Materials'%20Properties&rft.jtitle=Materials&rft.au=Branco,%20Danilo%20de%20Camargo&rft.date=2021-10-24&rft.volume=14&rft.issue=21&rft.spage=6352&rft.pages=6352-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14216352&rft_dat=%3Cproquest_pubme%3E2596053783%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596053783&rft_id=info:pmid/34771878&rfr_iscdi=true