Diagnosing Neurally Mediated Syncope Using Classification Techniques
Syncope is a medical condition resulting in the spontaneous transient loss of consciousness and postural tone with spontaneous recovery. The diagnosis of syncope is a challenging task, as similar types of symptoms are observed in seizures, vertigo, stroke, coma, etc. The advent of Healthcare 4.0, wh...
Gespeichert in:
Veröffentlicht in: | Journal of clinical medicine 2021-10, Vol.10 (21), p.5016 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | 5016 |
container_title | Journal of clinical medicine |
container_volume | 10 |
creator | Hussain, Shahadat Raza, Zahid Kumar, T V Vijay Goswami, Nandu |
description | Syncope is a medical condition resulting in the spontaneous transient loss of consciousness and postural tone with spontaneous recovery. The diagnosis of syncope is a challenging task, as similar types of symptoms are observed in seizures, vertigo, stroke, coma, etc. The advent of Healthcare 4.0, which facilitates the usage of artificial intelligence and big data, has been widely used for diagnosing various diseases based on past historical data. In this paper, classification-based machine learning is used to diagnose syncope based on data collected through a head-up tilt test carried out in a purely clinical setting. This work is concerned with the use of classification techniques for diagnosing neurally mediated syncope triggered by a number of neurocardiogenic or cardiac-related factors. Experimental results show the effectiveness of using classification-based machine learning techniques for an early diagnosis and proactive treatment of neurally mediated syncope. |
doi_str_mv | 10.3390/jcm10215016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8584937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597484567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-5532bf848cd447e43343100636a6fd59d09f21d16e08d2e44b256787ef31e373</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhoMotmhP_oEFL4JUk51skr0IUj-h6sF6Dml2tk3ZJnWzK_Tfu_1A1LnMwPvwzjsMIWeMXgHk9Hphl4ymLKNMHJB-SqUcUlBw-GvukUGMC9qVUjxl8pj0gEuhMlB9cnfnzMyH6PwsecW2NlW1Tl6wcKbBInlfextWmHxs9VFlYnSls6ZxwScTtHPvPluMp-SoNFXEwb6fkMnD_WT0NBy_PT6PbsdDC0o0wyyDdFoqrmzBuUQOwIFRKkAYURZZXtC8TFnBBFJVpMj5NM2EVBJLYAgSTsjNznbVTpdYWPRNl1evarc09VoH4_Rfxbu5noUvrTLF863Bxd6gDpvcjV66aLGqjMfQRp1mueSKd0s79Pwfught7bvrNpSgIFROO-pyR9k6xFhj-ROGUb35j_71H_gGNUaAhQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596036890</pqid></control><display><type>article</type><title>Diagnosing Neurally Mediated Syncope Using Classification Techniques</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Hussain, Shahadat ; Raza, Zahid ; Kumar, T V Vijay ; Goswami, Nandu</creator><creatorcontrib>Hussain, Shahadat ; Raza, Zahid ; Kumar, T V Vijay ; Goswami, Nandu</creatorcontrib><description>Syncope is a medical condition resulting in the spontaneous transient loss of consciousness and postural tone with spontaneous recovery. The diagnosis of syncope is a challenging task, as similar types of symptoms are observed in seizures, vertigo, stroke, coma, etc. The advent of Healthcare 4.0, which facilitates the usage of artificial intelligence and big data, has been widely used for diagnosing various diseases based on past historical data. In this paper, classification-based machine learning is used to diagnose syncope based on data collected through a head-up tilt test carried out in a purely clinical setting. This work is concerned with the use of classification techniques for diagnosing neurally mediated syncope triggered by a number of neurocardiogenic or cardiac-related factors. Experimental results show the effectiveness of using classification-based machine learning techniques for an early diagnosis and proactive treatment of neurally mediated syncope.</description><identifier>ISSN: 2077-0383</identifier><identifier>EISSN: 2077-0383</identifier><identifier>DOI: 10.3390/jcm10215016</identifier><identifier>PMID: 34768538</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Age groups ; Algorithms ; Artificial intelligence ; Blood pressure ; Classification ; Clinical medicine ; Consciousness ; Fainting ; Heart rate ; Machine learning ; Orthostatic hypotension ; Physiology ; Support vector machines</subject><ispartof>Journal of clinical medicine, 2021-10, Vol.10 (21), p.5016</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-5532bf848cd447e43343100636a6fd59d09f21d16e08d2e44b256787ef31e373</citedby><cites>FETCH-LOGICAL-c386t-5532bf848cd447e43343100636a6fd59d09f21d16e08d2e44b256787ef31e373</cites><orcidid>0000-0002-6704-0723 ; 0000-0002-4964-9690 ; 0000-0003-1906-6774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584937/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584937/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids></links><search><creatorcontrib>Hussain, Shahadat</creatorcontrib><creatorcontrib>Raza, Zahid</creatorcontrib><creatorcontrib>Kumar, T V Vijay</creatorcontrib><creatorcontrib>Goswami, Nandu</creatorcontrib><title>Diagnosing Neurally Mediated Syncope Using Classification Techniques</title><title>Journal of clinical medicine</title><description>Syncope is a medical condition resulting in the spontaneous transient loss of consciousness and postural tone with spontaneous recovery. The diagnosis of syncope is a challenging task, as similar types of symptoms are observed in seizures, vertigo, stroke, coma, etc. The advent of Healthcare 4.0, which facilitates the usage of artificial intelligence and big data, has been widely used for diagnosing various diseases based on past historical data. In this paper, classification-based machine learning is used to diagnose syncope based on data collected through a head-up tilt test carried out in a purely clinical setting. This work is concerned with the use of classification techniques for diagnosing neurally mediated syncope triggered by a number of neurocardiogenic or cardiac-related factors. Experimental results show the effectiveness of using classification-based machine learning techniques for an early diagnosis and proactive treatment of neurally mediated syncope.</description><subject>Age groups</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Blood pressure</subject><subject>Classification</subject><subject>Clinical medicine</subject><subject>Consciousness</subject><subject>Fainting</subject><subject>Heart rate</subject><subject>Machine learning</subject><subject>Orthostatic hypotension</subject><subject>Physiology</subject><subject>Support vector machines</subject><issn>2077-0383</issn><issn>2077-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU1LAzEQhoMotmhP_oEFL4JUk51skr0IUj-h6sF6Dml2tk3ZJnWzK_Tfu_1A1LnMwPvwzjsMIWeMXgHk9Hphl4ymLKNMHJB-SqUcUlBw-GvukUGMC9qVUjxl8pj0gEuhMlB9cnfnzMyH6PwsecW2NlW1Tl6wcKbBInlfextWmHxs9VFlYnSls6ZxwScTtHPvPluMp-SoNFXEwb6fkMnD_WT0NBy_PT6PbsdDC0o0wyyDdFoqrmzBuUQOwIFRKkAYURZZXtC8TFnBBFJVpMj5NM2EVBJLYAgSTsjNznbVTpdYWPRNl1evarc09VoH4_Rfxbu5noUvrTLF863Bxd6gDpvcjV66aLGqjMfQRp1mueSKd0s79Pwfught7bvrNpSgIFROO-pyR9k6xFhj-ROGUb35j_71H_gGNUaAhQ</recordid><startdate>20211028</startdate><enddate>20211028</enddate><creator>Hussain, Shahadat</creator><creator>Raza, Zahid</creator><creator>Kumar, T V Vijay</creator><creator>Goswami, Nandu</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6704-0723</orcidid><orcidid>https://orcid.org/0000-0002-4964-9690</orcidid><orcidid>https://orcid.org/0000-0003-1906-6774</orcidid></search><sort><creationdate>20211028</creationdate><title>Diagnosing Neurally Mediated Syncope Using Classification Techniques</title><author>Hussain, Shahadat ; Raza, Zahid ; Kumar, T V Vijay ; Goswami, Nandu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-5532bf848cd447e43343100636a6fd59d09f21d16e08d2e44b256787ef31e373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Age groups</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Blood pressure</topic><topic>Classification</topic><topic>Clinical medicine</topic><topic>Consciousness</topic><topic>Fainting</topic><topic>Heart rate</topic><topic>Machine learning</topic><topic>Orthostatic hypotension</topic><topic>Physiology</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussain, Shahadat</creatorcontrib><creatorcontrib>Raza, Zahid</creatorcontrib><creatorcontrib>Kumar, T V Vijay</creatorcontrib><creatorcontrib>Goswami, Nandu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of clinical medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussain, Shahadat</au><au>Raza, Zahid</au><au>Kumar, T V Vijay</au><au>Goswami, Nandu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagnosing Neurally Mediated Syncope Using Classification Techniques</atitle><jtitle>Journal of clinical medicine</jtitle><date>2021-10-28</date><risdate>2021</risdate><volume>10</volume><issue>21</issue><spage>5016</spage><pages>5016-</pages><issn>2077-0383</issn><eissn>2077-0383</eissn><abstract>Syncope is a medical condition resulting in the spontaneous transient loss of consciousness and postural tone with spontaneous recovery. The diagnosis of syncope is a challenging task, as similar types of symptoms are observed in seizures, vertigo, stroke, coma, etc. The advent of Healthcare 4.0, which facilitates the usage of artificial intelligence and big data, has been widely used for diagnosing various diseases based on past historical data. In this paper, classification-based machine learning is used to diagnose syncope based on data collected through a head-up tilt test carried out in a purely clinical setting. This work is concerned with the use of classification techniques for diagnosing neurally mediated syncope triggered by a number of neurocardiogenic or cardiac-related factors. Experimental results show the effectiveness of using classification-based machine learning techniques for an early diagnosis and proactive treatment of neurally mediated syncope.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34768538</pmid><doi>10.3390/jcm10215016</doi><orcidid>https://orcid.org/0000-0002-6704-0723</orcidid><orcidid>https://orcid.org/0000-0002-4964-9690</orcidid><orcidid>https://orcid.org/0000-0003-1906-6774</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-0383 |
ispartof | Journal of clinical medicine, 2021-10, Vol.10 (21), p.5016 |
issn | 2077-0383 2077-0383 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8584937 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Age groups Algorithms Artificial intelligence Blood pressure Classification Clinical medicine Consciousness Fainting Heart rate Machine learning Orthostatic hypotension Physiology Support vector machines |
title | Diagnosing Neurally Mediated Syncope Using Classification Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A12%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagnosing%20Neurally%20Mediated%20Syncope%20Using%20Classification%20Techniques&rft.jtitle=Journal%20of%20clinical%20medicine&rft.au=Hussain,%20Shahadat&rft.date=2021-10-28&rft.volume=10&rft.issue=21&rft.spage=5016&rft.pages=5016-&rft.issn=2077-0383&rft.eissn=2077-0383&rft_id=info:doi/10.3390/jcm10215016&rft_dat=%3Cproquest_pubme%3E2597484567%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596036890&rft_id=info:pmid/34768538&rfr_iscdi=true |