Recovery of Critical Metals from Aqueous Sources
Critical metals, identified from supply, demand, imports, and market factors, include rare earth elements (REEs), platinum group metals, precious metals, and other valuable metals such as lithium, cobalt, nickel, and uranium. Extraction of metals from U.S. saline aqueous, emphasizing saline, sources...
Gespeichert in:
Veröffentlicht in: | ACS sustainable chemistry & engineering 2021-09, Vol.9 (35), p.11616-11634 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11634 |
---|---|
container_issue | 35 |
container_start_page | 11616 |
container_title | ACS sustainable chemistry & engineering |
container_volume | 9 |
creator | Can Sener, Serife E Thomas, Valerie M Hogan, David E Maier, Raina M Carbajales-Dale, Michael Barton, Mark D Karanfil, Tanju Crittenden, John C Amy, Gary L |
description | Critical metals, identified from supply, demand, imports, and market factors, include rare earth elements (REEs), platinum group metals, precious metals, and other valuable metals such as lithium, cobalt, nickel, and uranium. Extraction of metals from U.S. saline aqueous, emphasizing saline, sources is explored as an alternative to hardrock ore mining. Potential aqueous sources include seawater, desalination brines, oil- and gas-produced waters, geothermal aquifers, and acid mine drainage, among others. A feasibility assessment reveals opportunities for recovery of lithium, strontium, magnesium, and several REEs from select sources, in quantities significant for U.S. manufacturing and for reduction of U.S. reliance on international supply chains. This is a conservative assessment given that water quality data are lacking for a significant number of critical metals in certain sources. The technology landscape for extraction and recovery of critical metals from aqueous sources is explored, identifying relevant processes along with knowledge gaps. Our analysis indicates that aqueous mining would result in much lower environmental impacts on water, air, and land than ore mining. Preliminary assessments of the economics and energy consumption of recovery show potential for recovery of critical metals. |
doi_str_mv | 10.1021/acssuschemeng.1c03005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8580379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597805004</sourcerecordid><originalsourceid>FETCH-LOGICAL-a496t-55149f522d4046d9f24e2ef4d593f631fbe57d94893eaea6e482670d0c26a34f3</originalsourceid><addsrcrecordid>eNqFkMtqwzAQRUVpaUKaTyh42U1SPW1pUwihL0gp9LEWijxKHGwrlexA_r4KCaVddTYzcOfeYQ5C1wRPCabk1tgY-2jX0EC7mhKLGcbiDA0pyeUEcynOf80DNI5xg1Mpxagkl2jAeFEUivIhwm9g_Q7CPvMum4eqq6ypsxfoTB0zF3yTzb568H3M3n0fLMQrdOGSBuNTH6HPh_uP-dNk8fr4PJ8tJoarvJsIQbhygtKSY56XylEOFBwvhWIuZ8QtQRSl4lIxMGBy4JLmBS6xpblh3LERujvmbvtlA6WFtgum1ttQNSbstTeV_qu01Vqv_E5LITErVAq4OQUEn16InW6qaKGuTXv4R1OhCokFxjytiuOqDT7GAO7nDMH6AFz_Aa5PwJOPHH1J1pvEp01E_vF8A-lEh0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597805004</pqid></control><display><type>article</type><title>Recovery of Critical Metals from Aqueous Sources</title><source>ACS Publications</source><creator>Can Sener, Serife E ; Thomas, Valerie M ; Hogan, David E ; Maier, Raina M ; Carbajales-Dale, Michael ; Barton, Mark D ; Karanfil, Tanju ; Crittenden, John C ; Amy, Gary L</creator><creatorcontrib>Can Sener, Serife E ; Thomas, Valerie M ; Hogan, David E ; Maier, Raina M ; Carbajales-Dale, Michael ; Barton, Mark D ; Karanfil, Tanju ; Crittenden, John C ; Amy, Gary L</creatorcontrib><description>Critical metals, identified from supply, demand, imports, and market factors, include rare earth elements (REEs), platinum group metals, precious metals, and other valuable metals such as lithium, cobalt, nickel, and uranium. Extraction of metals from U.S. saline aqueous, emphasizing saline, sources is explored as an alternative to hardrock ore mining. Potential aqueous sources include seawater, desalination brines, oil- and gas-produced waters, geothermal aquifers, and acid mine drainage, among others. A feasibility assessment reveals opportunities for recovery of lithium, strontium, magnesium, and several REEs from select sources, in quantities significant for U.S. manufacturing and for reduction of U.S. reliance on international supply chains. This is a conservative assessment given that water quality data are lacking for a significant number of critical metals in certain sources. The technology landscape for extraction and recovery of critical metals from aqueous sources is explored, identifying relevant processes along with knowledge gaps. Our analysis indicates that aqueous mining would result in much lower environmental impacts on water, air, and land than ore mining. Preliminary assessments of the economics and energy consumption of recovery show potential for recovery of critical metals.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.1c03005</identifier><identifier>PMID: 34777924</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sustainable chemistry & engineering, 2021-09, Vol.9 (35), p.11616-11634</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a496t-55149f522d4046d9f24e2ef4d593f631fbe57d94893eaea6e482670d0c26a34f3</citedby><cites>FETCH-LOGICAL-a496t-55149f522d4046d9f24e2ef4d593f631fbe57d94893eaea6e482670d0c26a34f3</cites><orcidid>0000-0002-9048-7208 ; 0000-0002-8085-7367 ; 0000-0003-0986-5628 ; 0000-0002-0968-8863 ; 0000-0002-0421-4677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.1c03005$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.1c03005$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Can Sener, Serife E</creatorcontrib><creatorcontrib>Thomas, Valerie M</creatorcontrib><creatorcontrib>Hogan, David E</creatorcontrib><creatorcontrib>Maier, Raina M</creatorcontrib><creatorcontrib>Carbajales-Dale, Michael</creatorcontrib><creatorcontrib>Barton, Mark D</creatorcontrib><creatorcontrib>Karanfil, Tanju</creatorcontrib><creatorcontrib>Crittenden, John C</creatorcontrib><creatorcontrib>Amy, Gary L</creatorcontrib><title>Recovery of Critical Metals from Aqueous Sources</title><title>ACS sustainable chemistry & engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>Critical metals, identified from supply, demand, imports, and market factors, include rare earth elements (REEs), platinum group metals, precious metals, and other valuable metals such as lithium, cobalt, nickel, and uranium. Extraction of metals from U.S. saline aqueous, emphasizing saline, sources is explored as an alternative to hardrock ore mining. Potential aqueous sources include seawater, desalination brines, oil- and gas-produced waters, geothermal aquifers, and acid mine drainage, among others. A feasibility assessment reveals opportunities for recovery of lithium, strontium, magnesium, and several REEs from select sources, in quantities significant for U.S. manufacturing and for reduction of U.S. reliance on international supply chains. This is a conservative assessment given that water quality data are lacking for a significant number of critical metals in certain sources. The technology landscape for extraction and recovery of critical metals from aqueous sources is explored, identifying relevant processes along with knowledge gaps. Our analysis indicates that aqueous mining would result in much lower environmental impacts on water, air, and land than ore mining. Preliminary assessments of the economics and energy consumption of recovery show potential for recovery of critical metals.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtqwzAQRUVpaUKaTyh42U1SPW1pUwihL0gp9LEWijxKHGwrlexA_r4KCaVddTYzcOfeYQ5C1wRPCabk1tgY-2jX0EC7mhKLGcbiDA0pyeUEcynOf80DNI5xg1Mpxagkl2jAeFEUivIhwm9g_Q7CPvMum4eqq6ypsxfoTB0zF3yTzb568H3M3n0fLMQrdOGSBuNTH6HPh_uP-dNk8fr4PJ8tJoarvJsIQbhygtKSY56XylEOFBwvhWIuZ8QtQRSl4lIxMGBy4JLmBS6xpblh3LERujvmbvtlA6WFtgum1ttQNSbstTeV_qu01Vqv_E5LITErVAq4OQUEn16InW6qaKGuTXv4R1OhCokFxjytiuOqDT7GAO7nDMH6AFz_Aa5PwJOPHH1J1pvEp01E_vF8A-lEh0g</recordid><startdate>20210906</startdate><enddate>20210906</enddate><creator>Can Sener, Serife E</creator><creator>Thomas, Valerie M</creator><creator>Hogan, David E</creator><creator>Maier, Raina M</creator><creator>Carbajales-Dale, Michael</creator><creator>Barton, Mark D</creator><creator>Karanfil, Tanju</creator><creator>Crittenden, John C</creator><creator>Amy, Gary L</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9048-7208</orcidid><orcidid>https://orcid.org/0000-0002-8085-7367</orcidid><orcidid>https://orcid.org/0000-0003-0986-5628</orcidid><orcidid>https://orcid.org/0000-0002-0968-8863</orcidid><orcidid>https://orcid.org/0000-0002-0421-4677</orcidid></search><sort><creationdate>20210906</creationdate><title>Recovery of Critical Metals from Aqueous Sources</title><author>Can Sener, Serife E ; Thomas, Valerie M ; Hogan, David E ; Maier, Raina M ; Carbajales-Dale, Michael ; Barton, Mark D ; Karanfil, Tanju ; Crittenden, John C ; Amy, Gary L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a496t-55149f522d4046d9f24e2ef4d593f631fbe57d94893eaea6e482670d0c26a34f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Can Sener, Serife E</creatorcontrib><creatorcontrib>Thomas, Valerie M</creatorcontrib><creatorcontrib>Hogan, David E</creatorcontrib><creatorcontrib>Maier, Raina M</creatorcontrib><creatorcontrib>Carbajales-Dale, Michael</creatorcontrib><creatorcontrib>Barton, Mark D</creatorcontrib><creatorcontrib>Karanfil, Tanju</creatorcontrib><creatorcontrib>Crittenden, John C</creatorcontrib><creatorcontrib>Amy, Gary L</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS sustainable chemistry & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Can Sener, Serife E</au><au>Thomas, Valerie M</au><au>Hogan, David E</au><au>Maier, Raina M</au><au>Carbajales-Dale, Michael</au><au>Barton, Mark D</au><au>Karanfil, Tanju</au><au>Crittenden, John C</au><au>Amy, Gary L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovery of Critical Metals from Aqueous Sources</atitle><jtitle>ACS sustainable chemistry & engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2021-09-06</date><risdate>2021</risdate><volume>9</volume><issue>35</issue><spage>11616</spage><epage>11634</epage><pages>11616-11634</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>Critical metals, identified from supply, demand, imports, and market factors, include rare earth elements (REEs), platinum group metals, precious metals, and other valuable metals such as lithium, cobalt, nickel, and uranium. Extraction of metals from U.S. saline aqueous, emphasizing saline, sources is explored as an alternative to hardrock ore mining. Potential aqueous sources include seawater, desalination brines, oil- and gas-produced waters, geothermal aquifers, and acid mine drainage, among others. A feasibility assessment reveals opportunities for recovery of lithium, strontium, magnesium, and several REEs from select sources, in quantities significant for U.S. manufacturing and for reduction of U.S. reliance on international supply chains. This is a conservative assessment given that water quality data are lacking for a significant number of critical metals in certain sources. The technology landscape for extraction and recovery of critical metals from aqueous sources is explored, identifying relevant processes along with knowledge gaps. Our analysis indicates that aqueous mining would result in much lower environmental impacts on water, air, and land than ore mining. Preliminary assessments of the economics and energy consumption of recovery show potential for recovery of critical metals.</abstract><pub>American Chemical Society</pub><pmid>34777924</pmid><doi>10.1021/acssuschemeng.1c03005</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9048-7208</orcidid><orcidid>https://orcid.org/0000-0002-8085-7367</orcidid><orcidid>https://orcid.org/0000-0003-0986-5628</orcidid><orcidid>https://orcid.org/0000-0002-0968-8863</orcidid><orcidid>https://orcid.org/0000-0002-0421-4677</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-0485 |
ispartof | ACS sustainable chemistry & engineering, 2021-09, Vol.9 (35), p.11616-11634 |
issn | 2168-0485 2168-0485 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8580379 |
source | ACS Publications |
title | Recovery of Critical Metals from Aqueous Sources |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A55%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovery%20of%20Critical%20Metals%20from%20Aqueous%20Sources&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Can%20Sener,%20Serife%20E&rft.date=2021-09-06&rft.volume=9&rft.issue=35&rft.spage=11616&rft.epage=11634&rft.pages=11616-11634&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.1c03005&rft_dat=%3Cproquest_pubme%3E2597805004%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2597805004&rft_id=info:pmid/34777924&rfr_iscdi=true |