Automatic Forecasting of Radiology Examination Volume Trends for Optimal Resource Planning and Allocation

The aim of the study was to evaluate the performance of the Prophet forecasting procedure, part of the Facebook open-source Artificial Intelligence portfolio, for forecasting variations in radiological examination volumes. Daily CT and MRI examination volumes from our institution were extracted from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of digital imaging 2022-02, Vol.35 (1), p.1-8
Hauptverfasser: Becker, Anton S., Erinjeri, Joseph P., Chaim, Joshua, Kastango, Nicholas, Elnajjar, Pierre, Hricak, Hedvig, Vargas, H. Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 1
container_start_page 1
container_title Journal of digital imaging
container_volume 35
creator Becker, Anton S.
Erinjeri, Joseph P.
Chaim, Joshua
Kastango, Nicholas
Elnajjar, Pierre
Hricak, Hedvig
Vargas, H. Alberto
description The aim of the study was to evaluate the performance of the Prophet forecasting procedure, part of the Facebook open-source Artificial Intelligence portfolio, for forecasting variations in radiological examination volumes. Daily CT and MRI examination volumes from our institution were extracted from the radiology information system (RIS) database. Data from January 1, 2015, to December 31, 2019, was used for training the Prophet algorithm, and data from January 2020 was used for validation. Algorithm performance was then evaluated prospectively in February and August 2020. Total error and mean error per day were evaluated, and computational time was logged using different Markov chain Monte Carlo (MCMC) samples. Data from 610,570 examinations were used for training; the majority were CTs (82.3%). During retrospective testing, prediction error was reduced from 19 to 
doi_str_mv 10.1007/s10278-021-00532-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8577854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596012717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-3379d6dfcc405a4f774e280bbafd18756991c1df5aa5d5300a608ab6dbf06aa23</originalsourceid><addsrcrecordid>eNp9kU9rFTEUxYMo9ln9Ai4k4MbN6M3_zEZ4lFaFQkup4i5kksxzykzyTGbEfnvz-mpbXXSVxf3dk3PuQeg1gfcEQH0oBKjSDVDSAAhGG_4ErYgkulFUfX-KVqBb1RCt2wP0opQrAKKE4s_RAeNKCMrbFRrWy5wmOw8On6QcnC3zEDc49fjC-iGNaXONj3_baYiVSRF_S-MyBXyZQ_QF9ynjs-08THbEF6GkJbuAz0cb407ERo_X45jczepL9Ky3Ywmvbt9D9PXk-PLoc3N69unL0fq0cVzxuWFMtV763jkOwvJeKR6ohq6zvSdaCdm2xBHfC2uFFwzAStC2k77rQVpL2SH6uNfdLt0UvAtxznY021xd5muT7GD-ncThh9mkX0YLpbTgVeDdrUBOP5dQZjMNxYWxxgppKYaKVgKhiqiKvv0Pvao3iDWeoZK2gjKQrFJ0T7mcSsmhvzNDwOyaNPsmTW3S3DRpdi7ePIxxt_K3ugqwPVDqKG5Cvv_7Edk_pEyrpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629523063</pqid></control><display><type>article</type><title>Automatic Forecasting of Radiology Examination Volume Trends for Optimal Resource Planning and Allocation</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Becker, Anton S. ; Erinjeri, Joseph P. ; Chaim, Joshua ; Kastango, Nicholas ; Elnajjar, Pierre ; Hricak, Hedvig ; Vargas, H. Alberto</creator><creatorcontrib>Becker, Anton S. ; Erinjeri, Joseph P. ; Chaim, Joshua ; Kastango, Nicholas ; Elnajjar, Pierre ; Hricak, Hedvig ; Vargas, H. Alberto</creatorcontrib><description>The aim of the study was to evaluate the performance of the Prophet forecasting procedure, part of the Facebook open-source Artificial Intelligence portfolio, for forecasting variations in radiological examination volumes. Daily CT and MRI examination volumes from our institution were extracted from the radiology information system (RIS) database. Data from January 1, 2015, to December 31, 2019, was used for training the Prophet algorithm, and data from January 2020 was used for validation. Algorithm performance was then evaluated prospectively in February and August 2020. Total error and mean error per day were evaluated, and computational time was logged using different Markov chain Monte Carlo (MCMC) samples. Data from 610,570 examinations were used for training; the majority were CTs (82.3%). During retrospective testing, prediction error was reduced from 19 to &lt; 1 per day in CT (total 589 to 17) and from 5 to &lt; 1 per day (total 144 to 27) in MRI by fine-tuning the Prophet procedure. Prospective prediction error in February was 11 per day in CT (9934 predicted, 9667 actual) and 1 per day in MRI (2484 predicted, 2457 actual) and was significantly better than manual weekly predictions ( p  = 0.001). Inference with MCMC added no substantial improvements while vastly increasing computational time. Prophet accurately models weekly, seasonal, and overall trends paving the way for optimal resource allocation for radiology exam acquisition and interpretation.</description><identifier>ISSN: 0897-1889</identifier><identifier>EISSN: 1618-727X</identifier><identifier>DOI: 10.1007/s10278-021-00532-4</identifier><identifier>PMID: 34755249</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Artificial Intelligence ; Computational efficiency ; Computer applications ; Computing time ; Error reduction ; Forecasting ; Humans ; Imaging ; Magnetic resonance imaging ; Markov chains ; Medicine ; Medicine &amp; Public Health ; Performance evaluation ; Predictions ; Prospective Studies ; Radiology ; Resource allocation ; Retrospective Studies ; Training ; Trends</subject><ispartof>Journal of digital imaging, 2022-02, Vol.35 (1), p.1-8</ispartof><rights>The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2021</rights><rights>2021. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.</rights><rights>The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-3379d6dfcc405a4f774e280bbafd18756991c1df5aa5d5300a608ab6dbf06aa23</citedby><cites>FETCH-LOGICAL-c474t-3379d6dfcc405a4f774e280bbafd18756991c1df5aa5d5300a608ab6dbf06aa23</cites><orcidid>0000-0001-8372-6496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577854/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577854/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34755249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Becker, Anton S.</creatorcontrib><creatorcontrib>Erinjeri, Joseph P.</creatorcontrib><creatorcontrib>Chaim, Joshua</creatorcontrib><creatorcontrib>Kastango, Nicholas</creatorcontrib><creatorcontrib>Elnajjar, Pierre</creatorcontrib><creatorcontrib>Hricak, Hedvig</creatorcontrib><creatorcontrib>Vargas, H. Alberto</creatorcontrib><title>Automatic Forecasting of Radiology Examination Volume Trends for Optimal Resource Planning and Allocation</title><title>Journal of digital imaging</title><addtitle>J Digit Imaging</addtitle><addtitle>J Digit Imaging</addtitle><description>The aim of the study was to evaluate the performance of the Prophet forecasting procedure, part of the Facebook open-source Artificial Intelligence portfolio, for forecasting variations in radiological examination volumes. Daily CT and MRI examination volumes from our institution were extracted from the radiology information system (RIS) database. Data from January 1, 2015, to December 31, 2019, was used for training the Prophet algorithm, and data from January 2020 was used for validation. Algorithm performance was then evaluated prospectively in February and August 2020. Total error and mean error per day were evaluated, and computational time was logged using different Markov chain Monte Carlo (MCMC) samples. Data from 610,570 examinations were used for training; the majority were CTs (82.3%). During retrospective testing, prediction error was reduced from 19 to &lt; 1 per day in CT (total 589 to 17) and from 5 to &lt; 1 per day (total 144 to 27) in MRI by fine-tuning the Prophet procedure. Prospective prediction error in February was 11 per day in CT (9934 predicted, 9667 actual) and 1 per day in MRI (2484 predicted, 2457 actual) and was significantly better than manual weekly predictions ( p  = 0.001). Inference with MCMC added no substantial improvements while vastly increasing computational time. Prophet accurately models weekly, seasonal, and overall trends paving the way for optimal resource allocation for radiology exam acquisition and interpretation.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computational efficiency</subject><subject>Computer applications</subject><subject>Computing time</subject><subject>Error reduction</subject><subject>Forecasting</subject><subject>Humans</subject><subject>Imaging</subject><subject>Magnetic resonance imaging</subject><subject>Markov chains</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Performance evaluation</subject><subject>Predictions</subject><subject>Prospective Studies</subject><subject>Radiology</subject><subject>Resource allocation</subject><subject>Retrospective Studies</subject><subject>Training</subject><subject>Trends</subject><issn>0897-1889</issn><issn>1618-727X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9rFTEUxYMo9ln9Ai4k4MbN6M3_zEZ4lFaFQkup4i5kksxzykzyTGbEfnvz-mpbXXSVxf3dk3PuQeg1gfcEQH0oBKjSDVDSAAhGG_4ErYgkulFUfX-KVqBb1RCt2wP0opQrAKKE4s_RAeNKCMrbFRrWy5wmOw8On6QcnC3zEDc49fjC-iGNaXONj3_baYiVSRF_S-MyBXyZQ_QF9ynjs-08THbEF6GkJbuAz0cb407ERo_X45jczepL9Ky3Ywmvbt9D9PXk-PLoc3N69unL0fq0cVzxuWFMtV763jkOwvJeKR6ohq6zvSdaCdm2xBHfC2uFFwzAStC2k77rQVpL2SH6uNfdLt0UvAtxznY021xd5muT7GD-ncThh9mkX0YLpbTgVeDdrUBOP5dQZjMNxYWxxgppKYaKVgKhiqiKvv0Pvao3iDWeoZK2gjKQrFJ0T7mcSsmhvzNDwOyaNPsmTW3S3DRpdi7ePIxxt_K3ugqwPVDqKG5Cvv_7Edk_pEyrpA</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Becker, Anton S.</creator><creator>Erinjeri, Joseph P.</creator><creator>Chaim, Joshua</creator><creator>Kastango, Nicholas</creator><creator>Elnajjar, Pierre</creator><creator>Hricak, Hedvig</creator><creator>Vargas, H. Alberto</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SC</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB0</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8372-6496</orcidid></search><sort><creationdate>20220201</creationdate><title>Automatic Forecasting of Radiology Examination Volume Trends for Optimal Resource Planning and Allocation</title><author>Becker, Anton S. ; Erinjeri, Joseph P. ; Chaim, Joshua ; Kastango, Nicholas ; Elnajjar, Pierre ; Hricak, Hedvig ; Vargas, H. Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-3379d6dfcc405a4f774e280bbafd18756991c1df5aa5d5300a608ab6dbf06aa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computational efficiency</topic><topic>Computer applications</topic><topic>Computing time</topic><topic>Error reduction</topic><topic>Forecasting</topic><topic>Humans</topic><topic>Imaging</topic><topic>Magnetic resonance imaging</topic><topic>Markov chains</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Performance evaluation</topic><topic>Predictions</topic><topic>Prospective Studies</topic><topic>Radiology</topic><topic>Resource allocation</topic><topic>Retrospective Studies</topic><topic>Training</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, Anton S.</creatorcontrib><creatorcontrib>Erinjeri, Joseph P.</creatorcontrib><creatorcontrib>Chaim, Joshua</creatorcontrib><creatorcontrib>Kastango, Nicholas</creatorcontrib><creatorcontrib>Elnajjar, Pierre</creatorcontrib><creatorcontrib>Hricak, Hedvig</creatorcontrib><creatorcontrib>Vargas, H. Alberto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of digital imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, Anton S.</au><au>Erinjeri, Joseph P.</au><au>Chaim, Joshua</au><au>Kastango, Nicholas</au><au>Elnajjar, Pierre</au><au>Hricak, Hedvig</au><au>Vargas, H. Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Forecasting of Radiology Examination Volume Trends for Optimal Resource Planning and Allocation</atitle><jtitle>Journal of digital imaging</jtitle><stitle>J Digit Imaging</stitle><addtitle>J Digit Imaging</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>35</volume><issue>1</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0897-1889</issn><eissn>1618-727X</eissn><abstract>The aim of the study was to evaluate the performance of the Prophet forecasting procedure, part of the Facebook open-source Artificial Intelligence portfolio, for forecasting variations in radiological examination volumes. Daily CT and MRI examination volumes from our institution were extracted from the radiology information system (RIS) database. Data from January 1, 2015, to December 31, 2019, was used for training the Prophet algorithm, and data from January 2020 was used for validation. Algorithm performance was then evaluated prospectively in February and August 2020. Total error and mean error per day were evaluated, and computational time was logged using different Markov chain Monte Carlo (MCMC) samples. Data from 610,570 examinations were used for training; the majority were CTs (82.3%). During retrospective testing, prediction error was reduced from 19 to &lt; 1 per day in CT (total 589 to 17) and from 5 to &lt; 1 per day (total 144 to 27) in MRI by fine-tuning the Prophet procedure. Prospective prediction error in February was 11 per day in CT (9934 predicted, 9667 actual) and 1 per day in MRI (2484 predicted, 2457 actual) and was significantly better than manual weekly predictions ( p  = 0.001). Inference with MCMC added no substantial improvements while vastly increasing computational time. Prophet accurately models weekly, seasonal, and overall trends paving the way for optimal resource allocation for radiology exam acquisition and interpretation.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>34755249</pmid><doi>10.1007/s10278-021-00532-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8372-6496</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-1889
ispartof Journal of digital imaging, 2022-02, Vol.35 (1), p.1-8
issn 0897-1889
1618-727X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8577854
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Algorithms
Artificial Intelligence
Computational efficiency
Computer applications
Computing time
Error reduction
Forecasting
Humans
Imaging
Magnetic resonance imaging
Markov chains
Medicine
Medicine & Public Health
Performance evaluation
Predictions
Prospective Studies
Radiology
Resource allocation
Retrospective Studies
Training
Trends
title Automatic Forecasting of Radiology Examination Volume Trends for Optimal Resource Planning and Allocation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A38%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Forecasting%20of%20Radiology%20Examination%20Volume%20Trends%20for%20Optimal%20Resource%20Planning%20and%20Allocation&rft.jtitle=Journal%20of%20digital%20imaging&rft.au=Becker,%20Anton%20S.&rft.date=2022-02-01&rft.volume=35&rft.issue=1&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0897-1889&rft.eissn=1618-727X&rft_id=info:doi/10.1007/s10278-021-00532-4&rft_dat=%3Cproquest_pubme%3E2596012717%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629523063&rft_id=info:pmid/34755249&rfr_iscdi=true