Comparative analysis of molecular fingerprints in prediction of drug combination effects

Application of machine and deep learning methods in drug discovery and cancer research has gained a considerable amount of attention in the past years. As the field grows, it becomes crucial to systematically evaluate the performance of novel computational solutions in relation to established techni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics 2021-11, Vol.22 (6)
Hauptverfasser: Zagidullin, B, Wang, Z, Guan, Y, Pitkänen, E, Tang, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Briefings in bioinformatics
container_volume 22
creator Zagidullin, B
Wang, Z
Guan, Y
Pitkänen, E
Tang, J
description Application of machine and deep learning methods in drug discovery and cancer research has gained a considerable amount of attention in the past years. As the field grows, it becomes crucial to systematically evaluate the performance of novel computational solutions in relation to established techniques. To this end, we compare rule-based and data-driven molecular representations in prediction of drug combination sensitivity and drug synergy scores using standardized results of 14 high-throughput screening studies, comprising 64 200 unique combinations of 4153 molecules tested in 112 cancer cell lines. We evaluate the clustering performance of molecular representations and quantify their similarity by adapting the Centered Kernel Alignment metric. Our work demonstrates that to identify an optimal molecular representation type, it is necessary to supplement quantitative benchmark results with qualitative considerations, such as model interpretability and robustness, which may vary between and throughout preclinical drug development projects.
doi_str_mv 10.1093/bib/bbab291
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8574997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562235202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-c7e225363811ac4b836c43a20b8ed4b294575ee21245c0c7c1326a0ecd739c473</originalsourceid><addsrcrecordid>eNpVkctLxDAQxoMoPlZP3qVHQap5Nu1FkMUXCF4UvIUkna6RNlmTdmH_e1t3FT1lMvPjm8eH0CnBlwRX7Mo4c2WMNrQiO-iQcClzjgXfneJC5oIX7AAdpfSBMcWyJPvogHGOSVmJQ_Q2D91SR927FWTa63adXMpCk3WhBTu0OmaN8wuIy-h8nzLns2WE2tneBT9xdRwWmQ2dcV5_56BpwPbpGO01uk1wsn1n6PXu9mX-kD893z_Ob55yy0rS51YCpYIV44doy03JCsuZptiUUPNxJy6kAKCEcmGxlZYwWmgMtpasslyyGbre6C4H00FtwfdRt2oct9NxrYJ26n_Fu3e1CCtVCsmrahI43wrE8DlA6lXnkoW21R7CkBQVBaVMUExH9GKD2hhSitD8tiFYTV6o0Qu19WKkz_5O9sv-HJ99AUvgiDQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562235202</pqid></control><display><type>article</type><title>Comparative analysis of molecular fingerprints in prediction of drug combination effects</title><source>PubMed Central Free</source><source>MEDLINE</source><source>EBSCOhost Business Source Complete</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zagidullin, B ; Wang, Z ; Guan, Y ; Pitkänen, E ; Tang, J</creator><creatorcontrib>Zagidullin, B ; Wang, Z ; Guan, Y ; Pitkänen, E ; Tang, J</creatorcontrib><description>Application of machine and deep learning methods in drug discovery and cancer research has gained a considerable amount of attention in the past years. As the field grows, it becomes crucial to systematically evaluate the performance of novel computational solutions in relation to established techniques. To this end, we compare rule-based and data-driven molecular representations in prediction of drug combination sensitivity and drug synergy scores using standardized results of 14 high-throughput screening studies, comprising 64 200 unique combinations of 4153 molecules tested in 112 cancer cell lines. We evaluate the clustering performance of molecular representations and quantify their similarity by adapting the Centered Kernel Alignment metric. Our work demonstrates that to identify an optimal molecular representation type, it is necessary to supplement quantitative benchmark results with qualitative considerations, such as model interpretability and robustness, which may vary between and throughout preclinical drug development projects.</description><identifier>ISSN: 1467-5463</identifier><identifier>ISSN: 1477-4054</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbab291</identifier><identifier>PMID: 34401895</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Case Study ; Cell Line, Tumor ; Computer Simulation ; Datasets as Topic ; Deep Learning ; Drug Combinations ; Drug Discovery - methods ; Drug Interactions ; Drug Synergism ; High-Throughput Screening Assays ; Humans ; Regression Analysis ; Uncertainty</subject><ispartof>Briefings in bioinformatics, 2021-11, Vol.22 (6)</ispartof><rights>The Author(s) 2021. Published by Oxford University Press.</rights><rights>The Author(s) 2021. Published by Oxford University Press. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-c7e225363811ac4b836c43a20b8ed4b294575ee21245c0c7c1326a0ecd739c473</citedby><cites>FETCH-LOGICAL-c381t-c7e225363811ac4b836c43a20b8ed4b294575ee21245c0c7c1326a0ecd739c473</cites><orcidid>0000-0002-8386-110X ; 0000-0001-5624-5275 ; 0000-0001-7480-7710 ; 0000-0002-9818-6370 ; 0000-0001-8275-2852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8574997/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8574997/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34401895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zagidullin, B</creatorcontrib><creatorcontrib>Wang, Z</creatorcontrib><creatorcontrib>Guan, Y</creatorcontrib><creatorcontrib>Pitkänen, E</creatorcontrib><creatorcontrib>Tang, J</creatorcontrib><title>Comparative analysis of molecular fingerprints in prediction of drug combination effects</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Application of machine and deep learning methods in drug discovery and cancer research has gained a considerable amount of attention in the past years. As the field grows, it becomes crucial to systematically evaluate the performance of novel computational solutions in relation to established techniques. To this end, we compare rule-based and data-driven molecular representations in prediction of drug combination sensitivity and drug synergy scores using standardized results of 14 high-throughput screening studies, comprising 64 200 unique combinations of 4153 molecules tested in 112 cancer cell lines. We evaluate the clustering performance of molecular representations and quantify their similarity by adapting the Centered Kernel Alignment metric. Our work demonstrates that to identify an optimal molecular representation type, it is necessary to supplement quantitative benchmark results with qualitative considerations, such as model interpretability and robustness, which may vary between and throughout preclinical drug development projects.</description><subject>Case Study</subject><subject>Cell Line, Tumor</subject><subject>Computer Simulation</subject><subject>Datasets as Topic</subject><subject>Deep Learning</subject><subject>Drug Combinations</subject><subject>Drug Discovery - methods</subject><subject>Drug Interactions</subject><subject>Drug Synergism</subject><subject>High-Throughput Screening Assays</subject><subject>Humans</subject><subject>Regression Analysis</subject><subject>Uncertainty</subject><issn>1467-5463</issn><issn>1477-4054</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctLxDAQxoMoPlZP3qVHQap5Nu1FkMUXCF4UvIUkna6RNlmTdmH_e1t3FT1lMvPjm8eH0CnBlwRX7Mo4c2WMNrQiO-iQcClzjgXfneJC5oIX7AAdpfSBMcWyJPvogHGOSVmJQ_Q2D91SR927FWTa63adXMpCk3WhBTu0OmaN8wuIy-h8nzLns2WE2tneBT9xdRwWmQ2dcV5_56BpwPbpGO01uk1wsn1n6PXu9mX-kD893z_Ob55yy0rS51YCpYIV44doy03JCsuZptiUUPNxJy6kAKCEcmGxlZYwWmgMtpasslyyGbre6C4H00FtwfdRt2oct9NxrYJ26n_Fu3e1CCtVCsmrahI43wrE8DlA6lXnkoW21R7CkBQVBaVMUExH9GKD2hhSitD8tiFYTV6o0Qu19WKkz_5O9sv-HJ99AUvgiDQ</recordid><startdate>20211105</startdate><enddate>20211105</enddate><creator>Zagidullin, B</creator><creator>Wang, Z</creator><creator>Guan, Y</creator><creator>Pitkänen, E</creator><creator>Tang, J</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8386-110X</orcidid><orcidid>https://orcid.org/0000-0001-5624-5275</orcidid><orcidid>https://orcid.org/0000-0001-7480-7710</orcidid><orcidid>https://orcid.org/0000-0002-9818-6370</orcidid><orcidid>https://orcid.org/0000-0001-8275-2852</orcidid></search><sort><creationdate>20211105</creationdate><title>Comparative analysis of molecular fingerprints in prediction of drug combination effects</title><author>Zagidullin, B ; Wang, Z ; Guan, Y ; Pitkänen, E ; Tang, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-c7e225363811ac4b836c43a20b8ed4b294575ee21245c0c7c1326a0ecd739c473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Case Study</topic><topic>Cell Line, Tumor</topic><topic>Computer Simulation</topic><topic>Datasets as Topic</topic><topic>Deep Learning</topic><topic>Drug Combinations</topic><topic>Drug Discovery - methods</topic><topic>Drug Interactions</topic><topic>Drug Synergism</topic><topic>High-Throughput Screening Assays</topic><topic>Humans</topic><topic>Regression Analysis</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zagidullin, B</creatorcontrib><creatorcontrib>Wang, Z</creatorcontrib><creatorcontrib>Guan, Y</creatorcontrib><creatorcontrib>Pitkänen, E</creatorcontrib><creatorcontrib>Tang, J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zagidullin, B</au><au>Wang, Z</au><au>Guan, Y</au><au>Pitkänen, E</au><au>Tang, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative analysis of molecular fingerprints in prediction of drug combination effects</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2021-11-05</date><risdate>2021</risdate><volume>22</volume><issue>6</issue><issn>1467-5463</issn><issn>1477-4054</issn><eissn>1477-4054</eissn><abstract>Application of machine and deep learning methods in drug discovery and cancer research has gained a considerable amount of attention in the past years. As the field grows, it becomes crucial to systematically evaluate the performance of novel computational solutions in relation to established techniques. To this end, we compare rule-based and data-driven molecular representations in prediction of drug combination sensitivity and drug synergy scores using standardized results of 14 high-throughput screening studies, comprising 64 200 unique combinations of 4153 molecules tested in 112 cancer cell lines. We evaluate the clustering performance of molecular representations and quantify their similarity by adapting the Centered Kernel Alignment metric. Our work demonstrates that to identify an optimal molecular representation type, it is necessary to supplement quantitative benchmark results with qualitative considerations, such as model interpretability and robustness, which may vary between and throughout preclinical drug development projects.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34401895</pmid><doi>10.1093/bib/bbab291</doi><orcidid>https://orcid.org/0000-0002-8386-110X</orcidid><orcidid>https://orcid.org/0000-0001-5624-5275</orcidid><orcidid>https://orcid.org/0000-0001-7480-7710</orcidid><orcidid>https://orcid.org/0000-0002-9818-6370</orcidid><orcidid>https://orcid.org/0000-0001-8275-2852</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-5463
ispartof Briefings in bioinformatics, 2021-11, Vol.22 (6)
issn 1467-5463
1477-4054
1477-4054
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8574997
source PubMed Central Free; MEDLINE; EBSCOhost Business Source Complete; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals
subjects Case Study
Cell Line, Tumor
Computer Simulation
Datasets as Topic
Deep Learning
Drug Combinations
Drug Discovery - methods
Drug Interactions
Drug Synergism
High-Throughput Screening Assays
Humans
Regression Analysis
Uncertainty
title Comparative analysis of molecular fingerprints in prediction of drug combination effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A52%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20analysis%20of%20molecular%20fingerprints%20in%20prediction%20of%20drug%20combination%20effects&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Zagidullin,%20B&rft.date=2021-11-05&rft.volume=22&rft.issue=6&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbab291&rft_dat=%3Cproquest_pubme%3E2562235202%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562235202&rft_id=info:pmid/34401895&rfr_iscdi=true