Comparative analysis of molecular fingerprints in prediction of drug combination effects
Application of machine and deep learning methods in drug discovery and cancer research has gained a considerable amount of attention in the past years. As the field grows, it becomes crucial to systematically evaluate the performance of novel computational solutions in relation to established techni...
Gespeichert in:
Veröffentlicht in: | Briefings in bioinformatics 2021-11, Vol.22 (6) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Briefings in bioinformatics |
container_volume | 22 |
creator | Zagidullin, B Wang, Z Guan, Y Pitkänen, E Tang, J |
description | Application of machine and deep learning methods in drug discovery and cancer research has gained a considerable amount of attention in the past years. As the field grows, it becomes crucial to systematically evaluate the performance of novel computational solutions in relation to established techniques. To this end, we compare rule-based and data-driven molecular representations in prediction of drug combination sensitivity and drug synergy scores using standardized results of 14 high-throughput screening studies, comprising 64 200 unique combinations of 4153 molecules tested in 112 cancer cell lines. We evaluate the clustering performance of molecular representations and quantify their similarity by adapting the Centered Kernel Alignment metric. Our work demonstrates that to identify an optimal molecular representation type, it is necessary to supplement quantitative benchmark results with qualitative considerations, such as model interpretability and robustness, which may vary between and throughout preclinical drug development projects. |
doi_str_mv | 10.1093/bib/bbab291 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8574997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562235202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-c7e225363811ac4b836c43a20b8ed4b294575ee21245c0c7c1326a0ecd739c473</originalsourceid><addsrcrecordid>eNpVkctLxDAQxoMoPlZP3qVHQap5Nu1FkMUXCF4UvIUkna6RNlmTdmH_e1t3FT1lMvPjm8eH0CnBlwRX7Mo4c2WMNrQiO-iQcClzjgXfneJC5oIX7AAdpfSBMcWyJPvogHGOSVmJQ_Q2D91SR927FWTa63adXMpCk3WhBTu0OmaN8wuIy-h8nzLns2WE2tneBT9xdRwWmQ2dcV5_56BpwPbpGO01uk1wsn1n6PXu9mX-kD893z_Ob55yy0rS51YCpYIV44doy03JCsuZptiUUPNxJy6kAKCEcmGxlZYwWmgMtpasslyyGbre6C4H00FtwfdRt2oct9NxrYJ26n_Fu3e1CCtVCsmrahI43wrE8DlA6lXnkoW21R7CkBQVBaVMUExH9GKD2hhSitD8tiFYTV6o0Qu19WKkz_5O9sv-HJ99AUvgiDQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562235202</pqid></control><display><type>article</type><title>Comparative analysis of molecular fingerprints in prediction of drug combination effects</title><source>PubMed Central Free</source><source>MEDLINE</source><source>EBSCOhost Business Source Complete</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zagidullin, B ; Wang, Z ; Guan, Y ; Pitkänen, E ; Tang, J</creator><creatorcontrib>Zagidullin, B ; Wang, Z ; Guan, Y ; Pitkänen, E ; Tang, J</creatorcontrib><description>Application of machine and deep learning methods in drug discovery and cancer research has gained a considerable amount of attention in the past years. As the field grows, it becomes crucial to systematically evaluate the performance of novel computational solutions in relation to established techniques. To this end, we compare rule-based and data-driven molecular representations in prediction of drug combination sensitivity and drug synergy scores using standardized results of 14 high-throughput screening studies, comprising 64 200 unique combinations of 4153 molecules tested in 112 cancer cell lines. We evaluate the clustering performance of molecular representations and quantify their similarity by adapting the Centered Kernel Alignment metric. Our work demonstrates that to identify an optimal molecular representation type, it is necessary to supplement quantitative benchmark results with qualitative considerations, such as model interpretability and robustness, which may vary between and throughout preclinical drug development projects.</description><identifier>ISSN: 1467-5463</identifier><identifier>ISSN: 1477-4054</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbab291</identifier><identifier>PMID: 34401895</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Case Study ; Cell Line, Tumor ; Computer Simulation ; Datasets as Topic ; Deep Learning ; Drug Combinations ; Drug Discovery - methods ; Drug Interactions ; Drug Synergism ; High-Throughput Screening Assays ; Humans ; Regression Analysis ; Uncertainty</subject><ispartof>Briefings in bioinformatics, 2021-11, Vol.22 (6)</ispartof><rights>The Author(s) 2021. Published by Oxford University Press.</rights><rights>The Author(s) 2021. Published by Oxford University Press. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-c7e225363811ac4b836c43a20b8ed4b294575ee21245c0c7c1326a0ecd739c473</citedby><cites>FETCH-LOGICAL-c381t-c7e225363811ac4b836c43a20b8ed4b294575ee21245c0c7c1326a0ecd739c473</cites><orcidid>0000-0002-8386-110X ; 0000-0001-5624-5275 ; 0000-0001-7480-7710 ; 0000-0002-9818-6370 ; 0000-0001-8275-2852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8574997/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8574997/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34401895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zagidullin, B</creatorcontrib><creatorcontrib>Wang, Z</creatorcontrib><creatorcontrib>Guan, Y</creatorcontrib><creatorcontrib>Pitkänen, E</creatorcontrib><creatorcontrib>Tang, J</creatorcontrib><title>Comparative analysis of molecular fingerprints in prediction of drug combination effects</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Application of machine and deep learning methods in drug discovery and cancer research has gained a considerable amount of attention in the past years. As the field grows, it becomes crucial to systematically evaluate the performance of novel computational solutions in relation to established techniques. To this end, we compare rule-based and data-driven molecular representations in prediction of drug combination sensitivity and drug synergy scores using standardized results of 14 high-throughput screening studies, comprising 64 200 unique combinations of 4153 molecules tested in 112 cancer cell lines. We evaluate the clustering performance of molecular representations and quantify their similarity by adapting the Centered Kernel Alignment metric. Our work demonstrates that to identify an optimal molecular representation type, it is necessary to supplement quantitative benchmark results with qualitative considerations, such as model interpretability and robustness, which may vary between and throughout preclinical drug development projects.</description><subject>Case Study</subject><subject>Cell Line, Tumor</subject><subject>Computer Simulation</subject><subject>Datasets as Topic</subject><subject>Deep Learning</subject><subject>Drug Combinations</subject><subject>Drug Discovery - methods</subject><subject>Drug Interactions</subject><subject>Drug Synergism</subject><subject>High-Throughput Screening Assays</subject><subject>Humans</subject><subject>Regression Analysis</subject><subject>Uncertainty</subject><issn>1467-5463</issn><issn>1477-4054</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctLxDAQxoMoPlZP3qVHQap5Nu1FkMUXCF4UvIUkna6RNlmTdmH_e1t3FT1lMvPjm8eH0CnBlwRX7Mo4c2WMNrQiO-iQcClzjgXfneJC5oIX7AAdpfSBMcWyJPvogHGOSVmJQ_Q2D91SR927FWTa63adXMpCk3WhBTu0OmaN8wuIy-h8nzLns2WE2tneBT9xdRwWmQ2dcV5_56BpwPbpGO01uk1wsn1n6PXu9mX-kD893z_Ob55yy0rS51YCpYIV44doy03JCsuZptiUUPNxJy6kAKCEcmGxlZYwWmgMtpasslyyGbre6C4H00FtwfdRt2oct9NxrYJ26n_Fu3e1CCtVCsmrahI43wrE8DlA6lXnkoW21R7CkBQVBaVMUExH9GKD2hhSitD8tiFYTV6o0Qu19WKkz_5O9sv-HJ99AUvgiDQ</recordid><startdate>20211105</startdate><enddate>20211105</enddate><creator>Zagidullin, B</creator><creator>Wang, Z</creator><creator>Guan, Y</creator><creator>Pitkänen, E</creator><creator>Tang, J</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8386-110X</orcidid><orcidid>https://orcid.org/0000-0001-5624-5275</orcidid><orcidid>https://orcid.org/0000-0001-7480-7710</orcidid><orcidid>https://orcid.org/0000-0002-9818-6370</orcidid><orcidid>https://orcid.org/0000-0001-8275-2852</orcidid></search><sort><creationdate>20211105</creationdate><title>Comparative analysis of molecular fingerprints in prediction of drug combination effects</title><author>Zagidullin, B ; Wang, Z ; Guan, Y ; Pitkänen, E ; Tang, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-c7e225363811ac4b836c43a20b8ed4b294575ee21245c0c7c1326a0ecd739c473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Case Study</topic><topic>Cell Line, Tumor</topic><topic>Computer Simulation</topic><topic>Datasets as Topic</topic><topic>Deep Learning</topic><topic>Drug Combinations</topic><topic>Drug Discovery - methods</topic><topic>Drug Interactions</topic><topic>Drug Synergism</topic><topic>High-Throughput Screening Assays</topic><topic>Humans</topic><topic>Regression Analysis</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zagidullin, B</creatorcontrib><creatorcontrib>Wang, Z</creatorcontrib><creatorcontrib>Guan, Y</creatorcontrib><creatorcontrib>Pitkänen, E</creatorcontrib><creatorcontrib>Tang, J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zagidullin, B</au><au>Wang, Z</au><au>Guan, Y</au><au>Pitkänen, E</au><au>Tang, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative analysis of molecular fingerprints in prediction of drug combination effects</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2021-11-05</date><risdate>2021</risdate><volume>22</volume><issue>6</issue><issn>1467-5463</issn><issn>1477-4054</issn><eissn>1477-4054</eissn><abstract>Application of machine and deep learning methods in drug discovery and cancer research has gained a considerable amount of attention in the past years. As the field grows, it becomes crucial to systematically evaluate the performance of novel computational solutions in relation to established techniques. To this end, we compare rule-based and data-driven molecular representations in prediction of drug combination sensitivity and drug synergy scores using standardized results of 14 high-throughput screening studies, comprising 64 200 unique combinations of 4153 molecules tested in 112 cancer cell lines. We evaluate the clustering performance of molecular representations and quantify their similarity by adapting the Centered Kernel Alignment metric. Our work demonstrates that to identify an optimal molecular representation type, it is necessary to supplement quantitative benchmark results with qualitative considerations, such as model interpretability and robustness, which may vary between and throughout preclinical drug development projects.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34401895</pmid><doi>10.1093/bib/bbab291</doi><orcidid>https://orcid.org/0000-0002-8386-110X</orcidid><orcidid>https://orcid.org/0000-0001-5624-5275</orcidid><orcidid>https://orcid.org/0000-0001-7480-7710</orcidid><orcidid>https://orcid.org/0000-0002-9818-6370</orcidid><orcidid>https://orcid.org/0000-0001-8275-2852</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-5463 |
ispartof | Briefings in bioinformatics, 2021-11, Vol.22 (6) |
issn | 1467-5463 1477-4054 1477-4054 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8574997 |
source | PubMed Central Free; MEDLINE; EBSCOhost Business Source Complete; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals |
subjects | Case Study Cell Line, Tumor Computer Simulation Datasets as Topic Deep Learning Drug Combinations Drug Discovery - methods Drug Interactions Drug Synergism High-Throughput Screening Assays Humans Regression Analysis Uncertainty |
title | Comparative analysis of molecular fingerprints in prediction of drug combination effects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A52%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20analysis%20of%20molecular%20fingerprints%20in%20prediction%20of%20drug%20combination%20effects&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Zagidullin,%20B&rft.date=2021-11-05&rft.volume=22&rft.issue=6&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbab291&rft_dat=%3Cproquest_pubme%3E2562235202%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562235202&rft_id=info:pmid/34401895&rfr_iscdi=true |