A multiple network-based bioinformatics pipeline for the study of molecular mechanisms in oncological diseases for personalized medicine
Motivation: Assessment of genetic mutations is an essential element in the modern era of personalized cancer treatment. Our strategy is focused on 'multiple network analysis' in which we try to improve cancer diagnostics by using biological networks. Genetic alterations in some important h...
Gespeichert in:
Veröffentlicht in: | Briefings in bioinformatics 2021-11, Vol.22 (6), Article 180 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Briefings in bioinformatics |
container_volume | 22 |
creator | Dotolo, Serena Marabotti, Anna Rachiglio, Anna Maria Abate, Riziero Esposito Benedetto, Marco Ciardiello, Fortunato De Luca, Antonella Normanno, Nicola Facchiano, Angelo Tagliaferri, Roberto |
description | Motivation: Assessment of genetic mutations is an essential element in the modern era of personalized cancer treatment. Our strategy is focused on 'multiple network analysis' in which we try to improve cancer diagnostics by using biological networks. Genetic alterations in some important hubs or in driver genes such as BRAF and TP53 play a critical role in regulating many important molecular processes. Most of the studies are focused on the analysis of the effects of single mutations, while tumors often carry mutations of multiple driver genes. The aim of this work is to define an innovative bioinformatics pipeline focused on the design and analysis of networks (such as biomedical and molecular networks), in order to: (1) improve the disease diagnosis; (2) identify the patients that could better respond to a given drug treatment; and (3) predict what are the primary and secondary effects of gene mutations involved in human diseases.
Results: By using our pipeline based on a multiple network approach, it has been possible to demonstrate and validate what are the joint effects and changes of the molecular profile that occur in patients with metastatic colorectal carcinoma (mCRC) carrying mutations in multiple genes. In this way, we can identify the most suitable drugs for the therapy for the individual patient. This information is useful to improve precision medicine in cancer patients. As an application of our pipeline, the clinically significant case studies of a cohort of mCRC patients with the BRAF V600E-TP53 I195N missense combined mutation were considered. |
doi_str_mv | 10.1093/bib/bbab180 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8574709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2534611045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-fafe6ba8ac512bbbb74e5e91611ce27b1dfe40aaaaddff34a1fe8df3931943113</originalsourceid><addsrcrecordid>eNqNkc2OFCEUhYnROGPryr1haWLKgQKaqo3JpONfMokbXROgLtMoBSVQTsYn8LGlnbbVnXfDDXycc-Eg9JSSl5SM7MJ4c2GMNnQg99A55VJ2nAh-_9BvZSf4lp2hR6V8JqQncqAP0RlrAGFiPEc_LvG8huqXADhCvUn5S2d0gQkbn3x0Kc-6elvw4hcIPgJuW7juAZe6Trc4OTynAHYNOuMZ7F5HX-aCfcQp2hTStbc64MkXaKrl1-0FcklRB_-92cwwedt0H6MHTocCT47rBn168_rj7l139eHt-93lVWfZQGvntIOt0YO2gvamleQgYKRbSi300tDJASe61TQ5x7imDobJsZHRkTNK2Qa9utNdVtO8LcSadVBL9rPOtyppr_49iX6vrtM3NQjJZfvvDXp-FMjp6wqlqtkXCyHoCGktqheMt2kIFw19cYfanErJ4E42lKhDdqplp47ZNfrZ35Od2N9h_ZG7AZNcsR6ihRNGCJGMsV7I1onDQ4f_p3e-tphT3KU1VvYTY-G9Iw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534611045</pqid></control><display><type>article</type><title>A multiple network-based bioinformatics pipeline for the study of molecular mechanisms in oncological diseases for personalized medicine</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Business Source Complete</source><source>Oxford Journals Open Access Collection</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><creator>Dotolo, Serena ; Marabotti, Anna ; Rachiglio, Anna Maria ; Abate, Riziero Esposito ; Benedetto, Marco ; Ciardiello, Fortunato ; De Luca, Antonella ; Normanno, Nicola ; Facchiano, Angelo ; Tagliaferri, Roberto</creator><creatorcontrib>Dotolo, Serena ; Marabotti, Anna ; Rachiglio, Anna Maria ; Abate, Riziero Esposito ; Benedetto, Marco ; Ciardiello, Fortunato ; De Luca, Antonella ; Normanno, Nicola ; Facchiano, Angelo ; Tagliaferri, Roberto</creatorcontrib><description>Motivation: Assessment of genetic mutations is an essential element in the modern era of personalized cancer treatment. Our strategy is focused on 'multiple network analysis' in which we try to improve cancer diagnostics by using biological networks. Genetic alterations in some important hubs or in driver genes such as BRAF and TP53 play a critical role in regulating many important molecular processes. Most of the studies are focused on the analysis of the effects of single mutations, while tumors often carry mutations of multiple driver genes. The aim of this work is to define an innovative bioinformatics pipeline focused on the design and analysis of networks (such as biomedical and molecular networks), in order to: (1) improve the disease diagnosis; (2) identify the patients that could better respond to a given drug treatment; and (3) predict what are the primary and secondary effects of gene mutations involved in human diseases.
Results: By using our pipeline based on a multiple network approach, it has been possible to demonstrate and validate what are the joint effects and changes of the molecular profile that occur in patients with metastatic colorectal carcinoma (mCRC) carrying mutations in multiple genes. In this way, we can identify the most suitable drugs for the therapy for the individual patient. This information is useful to improve precision medicine in cancer patients. As an application of our pipeline, the clinically significant case studies of a cohort of mCRC patients with the BRAF V600E-TP53 I195N missense combined mutation were considered.</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbab180</identifier><identifier>PMID: 34050359</identifier><language>eng</language><publisher>OXFORD: Oxford Univ Press</publisher><subject>Biochemical Research Methods ; Biochemistry & Molecular Biology ; Biomarkers, Tumor ; Computational Biology - methods ; Disease Susceptibility ; Gene Regulatory Networks ; Humans ; Life Sciences & Biomedicine ; Mathematical & Computational Biology ; Metabolic Networks and Pathways ; Neoplasms - etiology ; Neoplasms - metabolism ; Precision Medicine - methods ; Problem Solving Protocol ; Protein Interaction Maps ; Science & Technology ; Signal Transduction</subject><ispartof>Briefings in bioinformatics, 2021-11, Vol.22 (6), Article 180</ispartof><rights>The Author(s) 2021. Published by Oxford University Press.</rights><rights>The Author(s) 2021. Published by Oxford University Press. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000733325700051</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c381t-fafe6ba8ac512bbbb74e5e91611ce27b1dfe40aaaaddff34a1fe8df3931943113</citedby><cites>FETCH-LOGICAL-c381t-fafe6ba8ac512bbbb74e5e91611ce27b1dfe40aaaaddff34a1fe8df3931943113</cites><orcidid>0000-0002-9409-5463 ; 0000-0002-7077-4912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8574709/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8574709/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34050359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dotolo, Serena</creatorcontrib><creatorcontrib>Marabotti, Anna</creatorcontrib><creatorcontrib>Rachiglio, Anna Maria</creatorcontrib><creatorcontrib>Abate, Riziero Esposito</creatorcontrib><creatorcontrib>Benedetto, Marco</creatorcontrib><creatorcontrib>Ciardiello, Fortunato</creatorcontrib><creatorcontrib>De Luca, Antonella</creatorcontrib><creatorcontrib>Normanno, Nicola</creatorcontrib><creatorcontrib>Facchiano, Angelo</creatorcontrib><creatorcontrib>Tagliaferri, Roberto</creatorcontrib><title>A multiple network-based bioinformatics pipeline for the study of molecular mechanisms in oncological diseases for personalized medicine</title><title>Briefings in bioinformatics</title><addtitle>BRIEF BIOINFORM</addtitle><addtitle>Brief Bioinform</addtitle><description>Motivation: Assessment of genetic mutations is an essential element in the modern era of personalized cancer treatment. Our strategy is focused on 'multiple network analysis' in which we try to improve cancer diagnostics by using biological networks. Genetic alterations in some important hubs or in driver genes such as BRAF and TP53 play a critical role in regulating many important molecular processes. Most of the studies are focused on the analysis of the effects of single mutations, while tumors often carry mutations of multiple driver genes. The aim of this work is to define an innovative bioinformatics pipeline focused on the design and analysis of networks (such as biomedical and molecular networks), in order to: (1) improve the disease diagnosis; (2) identify the patients that could better respond to a given drug treatment; and (3) predict what are the primary and secondary effects of gene mutations involved in human diseases.
Results: By using our pipeline based on a multiple network approach, it has been possible to demonstrate and validate what are the joint effects and changes of the molecular profile that occur in patients with metastatic colorectal carcinoma (mCRC) carrying mutations in multiple genes. In this way, we can identify the most suitable drugs for the therapy for the individual patient. This information is useful to improve precision medicine in cancer patients. As an application of our pipeline, the clinically significant case studies of a cohort of mCRC patients with the BRAF V600E-TP53 I195N missense combined mutation were considered.</description><subject>Biochemical Research Methods</subject><subject>Biochemistry & Molecular Biology</subject><subject>Biomarkers, Tumor</subject><subject>Computational Biology - methods</subject><subject>Disease Susceptibility</subject><subject>Gene Regulatory Networks</subject><subject>Humans</subject><subject>Life Sciences & Biomedicine</subject><subject>Mathematical & Computational Biology</subject><subject>Metabolic Networks and Pathways</subject><subject>Neoplasms - etiology</subject><subject>Neoplasms - metabolism</subject><subject>Precision Medicine - methods</subject><subject>Problem Solving Protocol</subject><subject>Protein Interaction Maps</subject><subject>Science & Technology</subject><subject>Signal Transduction</subject><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc2OFCEUhYnROGPryr1haWLKgQKaqo3JpONfMokbXROgLtMoBSVQTsYn8LGlnbbVnXfDDXycc-Eg9JSSl5SM7MJ4c2GMNnQg99A55VJ2nAh-_9BvZSf4lp2hR6V8JqQncqAP0RlrAGFiPEc_LvG8huqXADhCvUn5S2d0gQkbn3x0Kc-6elvw4hcIPgJuW7juAZe6Trc4OTynAHYNOuMZ7F5HX-aCfcQp2hTStbc64MkXaKrl1-0FcklRB_-92cwwedt0H6MHTocCT47rBn168_rj7l139eHt-93lVWfZQGvntIOt0YO2gvamleQgYKRbSi300tDJASe61TQ5x7imDobJsZHRkTNK2Qa9utNdVtO8LcSadVBL9rPOtyppr_49iX6vrtM3NQjJZfvvDXp-FMjp6wqlqtkXCyHoCGktqheMt2kIFw19cYfanErJ4E42lKhDdqplp47ZNfrZ35Od2N9h_ZG7AZNcsR6ihRNGCJGMsV7I1onDQ4f_p3e-tphT3KU1VvYTY-G9Iw</recordid><startdate>20211105</startdate><enddate>20211105</enddate><creator>Dotolo, Serena</creator><creator>Marabotti, Anna</creator><creator>Rachiglio, Anna Maria</creator><creator>Abate, Riziero Esposito</creator><creator>Benedetto, Marco</creator><creator>Ciardiello, Fortunato</creator><creator>De Luca, Antonella</creator><creator>Normanno, Nicola</creator><creator>Facchiano, Angelo</creator><creator>Tagliaferri, Roberto</creator><general>Oxford Univ Press</general><general>Oxford University Press</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9409-5463</orcidid><orcidid>https://orcid.org/0000-0002-7077-4912</orcidid></search><sort><creationdate>20211105</creationdate><title>A multiple network-based bioinformatics pipeline for the study of molecular mechanisms in oncological diseases for personalized medicine</title><author>Dotolo, Serena ; Marabotti, Anna ; Rachiglio, Anna Maria ; Abate, Riziero Esposito ; Benedetto, Marco ; Ciardiello, Fortunato ; De Luca, Antonella ; Normanno, Nicola ; Facchiano, Angelo ; Tagliaferri, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-fafe6ba8ac512bbbb74e5e91611ce27b1dfe40aaaaddff34a1fe8df3931943113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemical Research Methods</topic><topic>Biochemistry & Molecular Biology</topic><topic>Biomarkers, Tumor</topic><topic>Computational Biology - methods</topic><topic>Disease Susceptibility</topic><topic>Gene Regulatory Networks</topic><topic>Humans</topic><topic>Life Sciences & Biomedicine</topic><topic>Mathematical & Computational Biology</topic><topic>Metabolic Networks and Pathways</topic><topic>Neoplasms - etiology</topic><topic>Neoplasms - metabolism</topic><topic>Precision Medicine - methods</topic><topic>Problem Solving Protocol</topic><topic>Protein Interaction Maps</topic><topic>Science & Technology</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dotolo, Serena</creatorcontrib><creatorcontrib>Marabotti, Anna</creatorcontrib><creatorcontrib>Rachiglio, Anna Maria</creatorcontrib><creatorcontrib>Abate, Riziero Esposito</creatorcontrib><creatorcontrib>Benedetto, Marco</creatorcontrib><creatorcontrib>Ciardiello, Fortunato</creatorcontrib><creatorcontrib>De Luca, Antonella</creatorcontrib><creatorcontrib>Normanno, Nicola</creatorcontrib><creatorcontrib>Facchiano, Angelo</creatorcontrib><creatorcontrib>Tagliaferri, Roberto</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dotolo, Serena</au><au>Marabotti, Anna</au><au>Rachiglio, Anna Maria</au><au>Abate, Riziero Esposito</au><au>Benedetto, Marco</au><au>Ciardiello, Fortunato</au><au>De Luca, Antonella</au><au>Normanno, Nicola</au><au>Facchiano, Angelo</au><au>Tagliaferri, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multiple network-based bioinformatics pipeline for the study of molecular mechanisms in oncological diseases for personalized medicine</atitle><jtitle>Briefings in bioinformatics</jtitle><stitle>BRIEF BIOINFORM</stitle><addtitle>Brief Bioinform</addtitle><date>2021-11-05</date><risdate>2021</risdate><volume>22</volume><issue>6</issue><artnum>180</artnum><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>Motivation: Assessment of genetic mutations is an essential element in the modern era of personalized cancer treatment. Our strategy is focused on 'multiple network analysis' in which we try to improve cancer diagnostics by using biological networks. Genetic alterations in some important hubs or in driver genes such as BRAF and TP53 play a critical role in regulating many important molecular processes. Most of the studies are focused on the analysis of the effects of single mutations, while tumors often carry mutations of multiple driver genes. The aim of this work is to define an innovative bioinformatics pipeline focused on the design and analysis of networks (such as biomedical and molecular networks), in order to: (1) improve the disease diagnosis; (2) identify the patients that could better respond to a given drug treatment; and (3) predict what are the primary and secondary effects of gene mutations involved in human diseases.
Results: By using our pipeline based on a multiple network approach, it has been possible to demonstrate and validate what are the joint effects and changes of the molecular profile that occur in patients with metastatic colorectal carcinoma (mCRC) carrying mutations in multiple genes. In this way, we can identify the most suitable drugs for the therapy for the individual patient. This information is useful to improve precision medicine in cancer patients. As an application of our pipeline, the clinically significant case studies of a cohort of mCRC patients with the BRAF V600E-TP53 I195N missense combined mutation were considered.</abstract><cop>OXFORD</cop><pub>Oxford Univ Press</pub><pmid>34050359</pmid><doi>10.1093/bib/bbab180</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9409-5463</orcidid><orcidid>https://orcid.org/0000-0002-7077-4912</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-5463 |
ispartof | Briefings in bioinformatics, 2021-11, Vol.22 (6), Article 180 |
issn | 1467-5463 1477-4054 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8574709 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Business Source Complete; Oxford Journals Open Access Collection; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central |
subjects | Biochemical Research Methods Biochemistry & Molecular Biology Biomarkers, Tumor Computational Biology - methods Disease Susceptibility Gene Regulatory Networks Humans Life Sciences & Biomedicine Mathematical & Computational Biology Metabolic Networks and Pathways Neoplasms - etiology Neoplasms - metabolism Precision Medicine - methods Problem Solving Protocol Protein Interaction Maps Science & Technology Signal Transduction |
title | A multiple network-based bioinformatics pipeline for the study of molecular mechanisms in oncological diseases for personalized medicine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T09%3A49%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multiple%20network-based%20bioinformatics%20pipeline%20for%20the%20study%20of%20molecular%20mechanisms%20in%20oncological%20diseases%20for%20personalized%20medicine&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Dotolo,%20Serena&rft.date=2021-11-05&rft.volume=22&rft.issue=6&rft.artnum=180&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbab180&rft_dat=%3Cproquest_pubme%3E2534611045%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2534611045&rft_id=info:pmid/34050359&rfr_iscdi=true |