A multiple network-based bioinformatics pipeline for the study of molecular mechanisms in oncological diseases for personalized medicine

Motivation: Assessment of genetic mutations is an essential element in the modern era of personalized cancer treatment. Our strategy is focused on 'multiple network analysis' in which we try to improve cancer diagnostics by using biological networks. Genetic alterations in some important h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics 2021-11, Vol.22 (6), Article 180
Hauptverfasser: Dotolo, Serena, Marabotti, Anna, Rachiglio, Anna Maria, Abate, Riziero Esposito, Benedetto, Marco, Ciardiello, Fortunato, De Luca, Antonella, Normanno, Nicola, Facchiano, Angelo, Tagliaferri, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivation: Assessment of genetic mutations is an essential element in the modern era of personalized cancer treatment. Our strategy is focused on 'multiple network analysis' in which we try to improve cancer diagnostics by using biological networks. Genetic alterations in some important hubs or in driver genes such as BRAF and TP53 play a critical role in regulating many important molecular processes. Most of the studies are focused on the analysis of the effects of single mutations, while tumors often carry mutations of multiple driver genes. The aim of this work is to define an innovative bioinformatics pipeline focused on the design and analysis of networks (such as biomedical and molecular networks), in order to: (1) improve the disease diagnosis; (2) identify the patients that could better respond to a given drug treatment; and (3) predict what are the primary and secondary effects of gene mutations involved in human diseases. Results: By using our pipeline based on a multiple network approach, it has been possible to demonstrate and validate what are the joint effects and changes of the molecular profile that occur in patients with metastatic colorectal carcinoma (mCRC) carrying mutations in multiple genes. In this way, we can identify the most suitable drugs for the therapy for the individual patient. This information is useful to improve precision medicine in cancer patients. As an application of our pipeline, the clinically significant case studies of a cohort of mCRC patients with the BRAF V600E-TP53 I195N missense combined mutation were considered.
ISSN:1467-5463
1477-4054
DOI:10.1093/bib/bbab180