The effect of agroecosystem management on the distribution of C functional groups in soil organic matter: A review
To improve soil health and to aid in climate change mitigation, the quantity of soil organic matter (SOM) should be maintained or increased over the long run. In doing so, not only the total quantity of SOC but also the stability of SOC must be considered. Stability of SOC increases as a function of...
Gespeichert in:
Veröffentlicht in: | Biology and fertility of soils 2021-10, Vol.57 (7), p.881-894 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 894 |
---|---|
container_issue | 7 |
container_start_page | 881 |
container_title | Biology and fertility of soils |
container_volume | 57 |
creator | Audette, Yuki Congreves, Katelyn A. Schneider, Kimberley Zaro, Geovanna C. Nunes, Amanda L. P. Zhang, Hongjie Voroney, R. Paul |
description | To improve soil health and to aid in climate change mitigation, the quantity of soil organic matter (SOM) should be maintained or increased over the long run. In doing so, not only the total quantity of SOC but also the stability of SOC must be considered. Stability of SOC increases as a function of resistance to microbial decomposition or microbial substrate use efficiency through chemical, biological, and physical mechanisms including humification, hydrophobic moieties, molecular diversity, and formation of macroaggregates. One of the mechanisms that enhance stability confers changes in the distribution of C functional groups of SOM. To better understand and quantify how these changes are influenced by agricultural management practices, we collected 670 pairwise data from the body of literature that has evaluated changes in the distribution of C functional groups of SOM measured by solid-state
13
C NMR spectroscopy. The types of agricultural managements discussed herein include (1) fertilization, (2) tillage, (3) crop rotation, (4) grazing, and (5) liming practices. Our meta-analyses show that these practices modify the distribution of C functional groups of SOM. Fertilization practices were associated with increased O-alkyl groups. Tillage resulted in increases in the SOC consisted of aromatic and carbonyl groups. Crop rotations, especially legume-based rotations, were found to increase the proportion of aromatic groups. Although there are fewer publications on tillage and crop rotation than on fertilization practices, the distribution of C functional groups may be more influenced by crop rotation and tillage practices than fertilization management—and should be a focus of future research. |
doi_str_mv | 10.1007/s00374-021-01580-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8570350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2571044700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-c757c2aaaf998a150e08b060cc495a7d9c6b1f8c7231b7f41e6a1ce754d0af623</originalsourceid><addsrcrecordid>eNp9kUFvFSEUhYmxsc_qH3BhSNx0M3phYJhxYdK8VG3SpJu6JgzvMqWZGZ7A1PTfy_hq1S5cETjfPXA4hLxh8J4BqA8JoFaiAs4qYLKFij8jGyZqXoFqu-dkA0y1FVcNPyYvU7qFlWLdC3JcCyU7UasNidc3SNE5tJkGR80QA9qQ7lPGiU5mNgNOOBdtprmQO59y9P2SfTko_Ja6Zbbrzoy0zC77RP1MU_AjDXEws7fFJWeMH-kZjXjn8ccrcuTMmPD1w3pCvn0-v95-rS6vvlxszy4rKwXkyiqpLDfGuK5rDZOA0PbQgLWik0btOtv0zLVW8Zr1ygmGjWEWlRQ7MK7h9Qn5dPDdL_2EO1tiRDPqffSTifc6GK__VWZ_o4dwp1upoJZQDE4fDGL4vmDKevLJ4jiaGcOSNJddI6RSTBb03RP0NiyxfMpKKQZCKFgN-YGyMaQU0T0-hoFeK9WHSnWpVP-qVK8x3v4d43Hkd4cFqA9AKtI8YPxz939sfwKA0K4-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571044700</pqid></control><display><type>article</type><title>The effect of agroecosystem management on the distribution of C functional groups in soil organic matter: A review</title><source>SpringerNature Journals</source><creator>Audette, Yuki ; Congreves, Katelyn A. ; Schneider, Kimberley ; Zaro, Geovanna C. ; Nunes, Amanda L. P. ; Zhang, Hongjie ; Voroney, R. Paul</creator><creatorcontrib>Audette, Yuki ; Congreves, Katelyn A. ; Schneider, Kimberley ; Zaro, Geovanna C. ; Nunes, Amanda L. P. ; Zhang, Hongjie ; Voroney, R. Paul</creatorcontrib><description>To improve soil health and to aid in climate change mitigation, the quantity of soil organic matter (SOM) should be maintained or increased over the long run. In doing so, not only the total quantity of SOC but also the stability of SOC must be considered. Stability of SOC increases as a function of resistance to microbial decomposition or microbial substrate use efficiency through chemical, biological, and physical mechanisms including humification, hydrophobic moieties, molecular diversity, and formation of macroaggregates. One of the mechanisms that enhance stability confers changes in the distribution of C functional groups of SOM. To better understand and quantify how these changes are influenced by agricultural management practices, we collected 670 pairwise data from the body of literature that has evaluated changes in the distribution of C functional groups of SOM measured by solid-state
13
C NMR spectroscopy. The types of agricultural managements discussed herein include (1) fertilization, (2) tillage, (3) crop rotation, (4) grazing, and (5) liming practices. Our meta-analyses show that these practices modify the distribution of C functional groups of SOM. Fertilization practices were associated with increased O-alkyl groups. Tillage resulted in increases in the SOC consisted of aromatic and carbonyl groups. Crop rotations, especially legume-based rotations, were found to increase the proportion of aromatic groups. Although there are fewer publications on tillage and crop rotation than on fertilization practices, the distribution of C functional groups may be more influenced by crop rotation and tillage practices than fertilization management—and should be a focus of future research.</description><identifier>ISSN: 0178-2762</identifier><identifier>EISSN: 1432-0789</identifier><identifier>DOI: 10.1007/s00374-021-01580-2</identifier><identifier>PMID: 34759437</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural ecosystems ; Agricultural management ; Agricultural practices ; Agriculture ; Analytical methods ; Aromatic compounds ; Biological fertilization ; Biomedical and Life Sciences ; Carbonyl compounds ; Carbonyl groups ; Carbonyls ; Climate change ; Climate change mitigation ; Crop rotation ; Crops ; Distribution ; Fertilization ; Functional groups ; Humification ; Hydrophobicity ; Legumes ; Life Sciences ; Liming ; Magnetic resonance spectroscopy ; Microorganisms ; Mitigation ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Organic matter ; Organic soils ; Review ; Rotation ; Soil ; Soil improvement ; Soil organic matter ; Soil Science & Conservation ; Soils ; Stability ; Substrates ; Tillage</subject><ispartof>Biology and fertility of soils, 2021-10, Vol.57 (7), p.881-894</ispartof><rights>The Author(s) 2021. corrected publication 2021</rights><rights>The Author(s) 2021, corrected publication 2021.</rights><rights>The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021, corrected publication 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-c757c2aaaf998a150e08b060cc495a7d9c6b1f8c7231b7f41e6a1ce754d0af623</citedby><cites>FETCH-LOGICAL-c540t-c757c2aaaf998a150e08b060cc495a7d9c6b1f8c7231b7f41e6a1ce754d0af623</cites><orcidid>0000-0002-3954-2478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00374-021-01580-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00374-021-01580-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34759437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Audette, Yuki</creatorcontrib><creatorcontrib>Congreves, Katelyn A.</creatorcontrib><creatorcontrib>Schneider, Kimberley</creatorcontrib><creatorcontrib>Zaro, Geovanna C.</creatorcontrib><creatorcontrib>Nunes, Amanda L. P.</creatorcontrib><creatorcontrib>Zhang, Hongjie</creatorcontrib><creatorcontrib>Voroney, R. Paul</creatorcontrib><title>The effect of agroecosystem management on the distribution of C functional groups in soil organic matter: A review</title><title>Biology and fertility of soils</title><addtitle>Biol Fertil Soils</addtitle><addtitle>Biol Fertil Soils</addtitle><description>To improve soil health and to aid in climate change mitigation, the quantity of soil organic matter (SOM) should be maintained or increased over the long run. In doing so, not only the total quantity of SOC but also the stability of SOC must be considered. Stability of SOC increases as a function of resistance to microbial decomposition or microbial substrate use efficiency through chemical, biological, and physical mechanisms including humification, hydrophobic moieties, molecular diversity, and formation of macroaggregates. One of the mechanisms that enhance stability confers changes in the distribution of C functional groups of SOM. To better understand and quantify how these changes are influenced by agricultural management practices, we collected 670 pairwise data from the body of literature that has evaluated changes in the distribution of C functional groups of SOM measured by solid-state
13
C NMR spectroscopy. The types of agricultural managements discussed herein include (1) fertilization, (2) tillage, (3) crop rotation, (4) grazing, and (5) liming practices. Our meta-analyses show that these practices modify the distribution of C functional groups of SOM. Fertilization practices were associated with increased O-alkyl groups. Tillage resulted in increases in the SOC consisted of aromatic and carbonyl groups. Crop rotations, especially legume-based rotations, were found to increase the proportion of aromatic groups. Although there are fewer publications on tillage and crop rotation than on fertilization practices, the distribution of C functional groups may be more influenced by crop rotation and tillage practices than fertilization management—and should be a focus of future research.</description><subject>Agricultural ecosystems</subject><subject>Agricultural management</subject><subject>Agricultural practices</subject><subject>Agriculture</subject><subject>Analytical methods</subject><subject>Aromatic compounds</subject><subject>Biological fertilization</subject><subject>Biomedical and Life Sciences</subject><subject>Carbonyl compounds</subject><subject>Carbonyl groups</subject><subject>Carbonyls</subject><subject>Climate change</subject><subject>Climate change mitigation</subject><subject>Crop rotation</subject><subject>Crops</subject><subject>Distribution</subject><subject>Fertilization</subject><subject>Functional groups</subject><subject>Humification</subject><subject>Hydrophobicity</subject><subject>Legumes</subject><subject>Life Sciences</subject><subject>Liming</subject><subject>Magnetic resonance spectroscopy</subject><subject>Microorganisms</subject><subject>Mitigation</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Organic matter</subject><subject>Organic soils</subject><subject>Review</subject><subject>Rotation</subject><subject>Soil</subject><subject>Soil improvement</subject><subject>Soil organic matter</subject><subject>Soil Science & Conservation</subject><subject>Soils</subject><subject>Stability</subject><subject>Substrates</subject><subject>Tillage</subject><issn>0178-2762</issn><issn>1432-0789</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUFvFSEUhYmxsc_qH3BhSNx0M3phYJhxYdK8VG3SpJu6JgzvMqWZGZ7A1PTfy_hq1S5cETjfPXA4hLxh8J4BqA8JoFaiAs4qYLKFij8jGyZqXoFqu-dkA0y1FVcNPyYvU7qFlWLdC3JcCyU7UasNidc3SNE5tJkGR80QA9qQ7lPGiU5mNgNOOBdtprmQO59y9P2SfTko_Ja6Zbbrzoy0zC77RP1MU_AjDXEws7fFJWeMH-kZjXjn8ccrcuTMmPD1w3pCvn0-v95-rS6vvlxszy4rKwXkyiqpLDfGuK5rDZOA0PbQgLWik0btOtv0zLVW8Zr1ygmGjWEWlRQ7MK7h9Qn5dPDdL_2EO1tiRDPqffSTifc6GK__VWZ_o4dwp1upoJZQDE4fDGL4vmDKevLJ4jiaGcOSNJddI6RSTBb03RP0NiyxfMpKKQZCKFgN-YGyMaQU0T0-hoFeK9WHSnWpVP-qVK8x3v4d43Hkd4cFqA9AKtI8YPxz939sfwKA0K4-</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Audette, Yuki</creator><creator>Congreves, Katelyn A.</creator><creator>Schneider, Kimberley</creator><creator>Zaro, Geovanna C.</creator><creator>Nunes, Amanda L. P.</creator><creator>Zhang, Hongjie</creator><creator>Voroney, R. Paul</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7T7</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M0K</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3954-2478</orcidid></search><sort><creationdate>20211001</creationdate><title>The effect of agroecosystem management on the distribution of C functional groups in soil organic matter: A review</title><author>Audette, Yuki ; Congreves, Katelyn A. ; Schneider, Kimberley ; Zaro, Geovanna C. ; Nunes, Amanda L. P. ; Zhang, Hongjie ; Voroney, R. Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-c757c2aaaf998a150e08b060cc495a7d9c6b1f8c7231b7f41e6a1ce754d0af623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agricultural ecosystems</topic><topic>Agricultural management</topic><topic>Agricultural practices</topic><topic>Agriculture</topic><topic>Analytical methods</topic><topic>Aromatic compounds</topic><topic>Biological fertilization</topic><topic>Biomedical and Life Sciences</topic><topic>Carbonyl compounds</topic><topic>Carbonyl groups</topic><topic>Carbonyls</topic><topic>Climate change</topic><topic>Climate change mitigation</topic><topic>Crop rotation</topic><topic>Crops</topic><topic>Distribution</topic><topic>Fertilization</topic><topic>Functional groups</topic><topic>Humification</topic><topic>Hydrophobicity</topic><topic>Legumes</topic><topic>Life Sciences</topic><topic>Liming</topic><topic>Magnetic resonance spectroscopy</topic><topic>Microorganisms</topic><topic>Mitigation</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Organic matter</topic><topic>Organic soils</topic><topic>Review</topic><topic>Rotation</topic><topic>Soil</topic><topic>Soil improvement</topic><topic>Soil organic matter</topic><topic>Soil Science & Conservation</topic><topic>Soils</topic><topic>Stability</topic><topic>Substrates</topic><topic>Tillage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Audette, Yuki</creatorcontrib><creatorcontrib>Congreves, Katelyn A.</creatorcontrib><creatorcontrib>Schneider, Kimberley</creatorcontrib><creatorcontrib>Zaro, Geovanna C.</creatorcontrib><creatorcontrib>Nunes, Amanda L. P.</creatorcontrib><creatorcontrib>Zhang, Hongjie</creatorcontrib><creatorcontrib>Voroney, R. Paul</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biology and fertility of soils</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Audette, Yuki</au><au>Congreves, Katelyn A.</au><au>Schneider, Kimberley</au><au>Zaro, Geovanna C.</au><au>Nunes, Amanda L. P.</au><au>Zhang, Hongjie</au><au>Voroney, R. Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of agroecosystem management on the distribution of C functional groups in soil organic matter: A review</atitle><jtitle>Biology and fertility of soils</jtitle><stitle>Biol Fertil Soils</stitle><addtitle>Biol Fertil Soils</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>57</volume><issue>7</issue><spage>881</spage><epage>894</epage><pages>881-894</pages><issn>0178-2762</issn><eissn>1432-0789</eissn><abstract>To improve soil health and to aid in climate change mitigation, the quantity of soil organic matter (SOM) should be maintained or increased over the long run. In doing so, not only the total quantity of SOC but also the stability of SOC must be considered. Stability of SOC increases as a function of resistance to microbial decomposition or microbial substrate use efficiency through chemical, biological, and physical mechanisms including humification, hydrophobic moieties, molecular diversity, and formation of macroaggregates. One of the mechanisms that enhance stability confers changes in the distribution of C functional groups of SOM. To better understand and quantify how these changes are influenced by agricultural management practices, we collected 670 pairwise data from the body of literature that has evaluated changes in the distribution of C functional groups of SOM measured by solid-state
13
C NMR spectroscopy. The types of agricultural managements discussed herein include (1) fertilization, (2) tillage, (3) crop rotation, (4) grazing, and (5) liming practices. Our meta-analyses show that these practices modify the distribution of C functional groups of SOM. Fertilization practices were associated with increased O-alkyl groups. Tillage resulted in increases in the SOC consisted of aromatic and carbonyl groups. Crop rotations, especially legume-based rotations, were found to increase the proportion of aromatic groups. Although there are fewer publications on tillage and crop rotation than on fertilization practices, the distribution of C functional groups may be more influenced by crop rotation and tillage practices than fertilization management—and should be a focus of future research.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34759437</pmid><doi>10.1007/s00374-021-01580-2</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3954-2478</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2762 |
ispartof | Biology and fertility of soils, 2021-10, Vol.57 (7), p.881-894 |
issn | 0178-2762 1432-0789 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8570350 |
source | SpringerNature Journals |
subjects | Agricultural ecosystems Agricultural management Agricultural practices Agriculture Analytical methods Aromatic compounds Biological fertilization Biomedical and Life Sciences Carbonyl compounds Carbonyl groups Carbonyls Climate change Climate change mitigation Crop rotation Crops Distribution Fertilization Functional groups Humification Hydrophobicity Legumes Life Sciences Liming Magnetic resonance spectroscopy Microorganisms Mitigation NMR NMR spectroscopy Nuclear magnetic resonance Organic matter Organic soils Review Rotation Soil Soil improvement Soil organic matter Soil Science & Conservation Soils Stability Substrates Tillage |
title | The effect of agroecosystem management on the distribution of C functional groups in soil organic matter: A review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A32%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20agroecosystem%20management%20on%20the%20distribution%20of%20C%20functional%20groups%20in%20soil%20organic%20matter:%20A%20review&rft.jtitle=Biology%20and%20fertility%20of%20soils&rft.au=Audette,%20Yuki&rft.date=2021-10-01&rft.volume=57&rft.issue=7&rft.spage=881&rft.epage=894&rft.pages=881-894&rft.issn=0178-2762&rft.eissn=1432-0789&rft_id=info:doi/10.1007/s00374-021-01580-2&rft_dat=%3Cproquest_pubme%3E2571044700%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571044700&rft_id=info:pmid/34759437&rfr_iscdi=true |