The effect of agroecosystem management on the distribution of C functional groups in soil organic matter: A review

To improve soil health and to aid in climate change mitigation, the quantity of soil organic matter (SOM) should be maintained or increased over the long run. In doing so, not only the total quantity of SOC but also the stability of SOC must be considered. Stability of SOC increases as a function of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology and fertility of soils 2021-10, Vol.57 (7), p.881-894
Hauptverfasser: Audette, Yuki, Congreves, Katelyn A., Schneider, Kimberley, Zaro, Geovanna C., Nunes, Amanda L. P., Zhang, Hongjie, Voroney, R. Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 894
container_issue 7
container_start_page 881
container_title Biology and fertility of soils
container_volume 57
creator Audette, Yuki
Congreves, Katelyn A.
Schneider, Kimberley
Zaro, Geovanna C.
Nunes, Amanda L. P.
Zhang, Hongjie
Voroney, R. Paul
description To improve soil health and to aid in climate change mitigation, the quantity of soil organic matter (SOM) should be maintained or increased over the long run. In doing so, not only the total quantity of SOC but also the stability of SOC must be considered. Stability of SOC increases as a function of resistance to microbial decomposition or microbial substrate use efficiency through chemical, biological, and physical mechanisms including humification, hydrophobic moieties, molecular diversity, and formation of macroaggregates. One of the mechanisms that enhance stability confers changes in the distribution of C functional groups of SOM. To better understand and quantify how these changes are influenced by agricultural management practices, we collected 670 pairwise data from the body of literature that has evaluated changes in the distribution of C functional groups of SOM measured by solid-state 13 C NMR spectroscopy. The types of agricultural managements discussed herein include (1) fertilization, (2) tillage, (3) crop rotation, (4) grazing, and (5) liming practices. Our meta-analyses show that these practices modify the distribution of C functional groups of SOM. Fertilization practices were associated with increased O-alkyl groups. Tillage resulted in increases in the SOC consisted of aromatic and carbonyl groups. Crop rotations, especially legume-based rotations, were found to increase the proportion of aromatic groups. Although there are fewer publications on tillage and crop rotation than on fertilization practices, the distribution of C functional groups may be more influenced by crop rotation and tillage practices than fertilization management—and should be a focus of future research.
doi_str_mv 10.1007/s00374-021-01580-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8570350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2571044700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-c757c2aaaf998a150e08b060cc495a7d9c6b1f8c7231b7f41e6a1ce754d0af623</originalsourceid><addsrcrecordid>eNp9kUFvFSEUhYmxsc_qH3BhSNx0M3phYJhxYdK8VG3SpJu6JgzvMqWZGZ7A1PTfy_hq1S5cETjfPXA4hLxh8J4BqA8JoFaiAs4qYLKFij8jGyZqXoFqu-dkA0y1FVcNPyYvU7qFlWLdC3JcCyU7UasNidc3SNE5tJkGR80QA9qQ7lPGiU5mNgNOOBdtprmQO59y9P2SfTko_Ja6Zbbrzoy0zC77RP1MU_AjDXEws7fFJWeMH-kZjXjn8ccrcuTMmPD1w3pCvn0-v95-rS6vvlxszy4rKwXkyiqpLDfGuK5rDZOA0PbQgLWik0btOtv0zLVW8Zr1ygmGjWEWlRQ7MK7h9Qn5dPDdL_2EO1tiRDPqffSTifc6GK__VWZ_o4dwp1upoJZQDE4fDGL4vmDKevLJ4jiaGcOSNJddI6RSTBb03RP0NiyxfMpKKQZCKFgN-YGyMaQU0T0-hoFeK9WHSnWpVP-qVK8x3v4d43Hkd4cFqA9AKtI8YPxz939sfwKA0K4-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571044700</pqid></control><display><type>article</type><title>The effect of agroecosystem management on the distribution of C functional groups in soil organic matter: A review</title><source>SpringerNature Journals</source><creator>Audette, Yuki ; Congreves, Katelyn A. ; Schneider, Kimberley ; Zaro, Geovanna C. ; Nunes, Amanda L. P. ; Zhang, Hongjie ; Voroney, R. Paul</creator><creatorcontrib>Audette, Yuki ; Congreves, Katelyn A. ; Schneider, Kimberley ; Zaro, Geovanna C. ; Nunes, Amanda L. P. ; Zhang, Hongjie ; Voroney, R. Paul</creatorcontrib><description>To improve soil health and to aid in climate change mitigation, the quantity of soil organic matter (SOM) should be maintained or increased over the long run. In doing so, not only the total quantity of SOC but also the stability of SOC must be considered. Stability of SOC increases as a function of resistance to microbial decomposition or microbial substrate use efficiency through chemical, biological, and physical mechanisms including humification, hydrophobic moieties, molecular diversity, and formation of macroaggregates. One of the mechanisms that enhance stability confers changes in the distribution of C functional groups of SOM. To better understand and quantify how these changes are influenced by agricultural management practices, we collected 670 pairwise data from the body of literature that has evaluated changes in the distribution of C functional groups of SOM measured by solid-state 13 C NMR spectroscopy. The types of agricultural managements discussed herein include (1) fertilization, (2) tillage, (3) crop rotation, (4) grazing, and (5) liming practices. Our meta-analyses show that these practices modify the distribution of C functional groups of SOM. Fertilization practices were associated with increased O-alkyl groups. Tillage resulted in increases in the SOC consisted of aromatic and carbonyl groups. Crop rotations, especially legume-based rotations, were found to increase the proportion of aromatic groups. Although there are fewer publications on tillage and crop rotation than on fertilization practices, the distribution of C functional groups may be more influenced by crop rotation and tillage practices than fertilization management—and should be a focus of future research.</description><identifier>ISSN: 0178-2762</identifier><identifier>EISSN: 1432-0789</identifier><identifier>DOI: 10.1007/s00374-021-01580-2</identifier><identifier>PMID: 34759437</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural ecosystems ; Agricultural management ; Agricultural practices ; Agriculture ; Analytical methods ; Aromatic compounds ; Biological fertilization ; Biomedical and Life Sciences ; Carbonyl compounds ; Carbonyl groups ; Carbonyls ; Climate change ; Climate change mitigation ; Crop rotation ; Crops ; Distribution ; Fertilization ; Functional groups ; Humification ; Hydrophobicity ; Legumes ; Life Sciences ; Liming ; Magnetic resonance spectroscopy ; Microorganisms ; Mitigation ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Organic matter ; Organic soils ; Review ; Rotation ; Soil ; Soil improvement ; Soil organic matter ; Soil Science &amp; Conservation ; Soils ; Stability ; Substrates ; Tillage</subject><ispartof>Biology and fertility of soils, 2021-10, Vol.57 (7), p.881-894</ispartof><rights>The Author(s) 2021. corrected publication 2021</rights><rights>The Author(s) 2021, corrected publication 2021.</rights><rights>The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021, corrected publication 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-c757c2aaaf998a150e08b060cc495a7d9c6b1f8c7231b7f41e6a1ce754d0af623</citedby><cites>FETCH-LOGICAL-c540t-c757c2aaaf998a150e08b060cc495a7d9c6b1f8c7231b7f41e6a1ce754d0af623</cites><orcidid>0000-0002-3954-2478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00374-021-01580-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00374-021-01580-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34759437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Audette, Yuki</creatorcontrib><creatorcontrib>Congreves, Katelyn A.</creatorcontrib><creatorcontrib>Schneider, Kimberley</creatorcontrib><creatorcontrib>Zaro, Geovanna C.</creatorcontrib><creatorcontrib>Nunes, Amanda L. P.</creatorcontrib><creatorcontrib>Zhang, Hongjie</creatorcontrib><creatorcontrib>Voroney, R. Paul</creatorcontrib><title>The effect of agroecosystem management on the distribution of C functional groups in soil organic matter: A review</title><title>Biology and fertility of soils</title><addtitle>Biol Fertil Soils</addtitle><addtitle>Biol Fertil Soils</addtitle><description>To improve soil health and to aid in climate change mitigation, the quantity of soil organic matter (SOM) should be maintained or increased over the long run. In doing so, not only the total quantity of SOC but also the stability of SOC must be considered. Stability of SOC increases as a function of resistance to microbial decomposition or microbial substrate use efficiency through chemical, biological, and physical mechanisms including humification, hydrophobic moieties, molecular diversity, and formation of macroaggregates. One of the mechanisms that enhance stability confers changes in the distribution of C functional groups of SOM. To better understand and quantify how these changes are influenced by agricultural management practices, we collected 670 pairwise data from the body of literature that has evaluated changes in the distribution of C functional groups of SOM measured by solid-state 13 C NMR spectroscopy. The types of agricultural managements discussed herein include (1) fertilization, (2) tillage, (3) crop rotation, (4) grazing, and (5) liming practices. Our meta-analyses show that these practices modify the distribution of C functional groups of SOM. Fertilization practices were associated with increased O-alkyl groups. Tillage resulted in increases in the SOC consisted of aromatic and carbonyl groups. Crop rotations, especially legume-based rotations, were found to increase the proportion of aromatic groups. Although there are fewer publications on tillage and crop rotation than on fertilization practices, the distribution of C functional groups may be more influenced by crop rotation and tillage practices than fertilization management—and should be a focus of future research.</description><subject>Agricultural ecosystems</subject><subject>Agricultural management</subject><subject>Agricultural practices</subject><subject>Agriculture</subject><subject>Analytical methods</subject><subject>Aromatic compounds</subject><subject>Biological fertilization</subject><subject>Biomedical and Life Sciences</subject><subject>Carbonyl compounds</subject><subject>Carbonyl groups</subject><subject>Carbonyls</subject><subject>Climate change</subject><subject>Climate change mitigation</subject><subject>Crop rotation</subject><subject>Crops</subject><subject>Distribution</subject><subject>Fertilization</subject><subject>Functional groups</subject><subject>Humification</subject><subject>Hydrophobicity</subject><subject>Legumes</subject><subject>Life Sciences</subject><subject>Liming</subject><subject>Magnetic resonance spectroscopy</subject><subject>Microorganisms</subject><subject>Mitigation</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Organic matter</subject><subject>Organic soils</subject><subject>Review</subject><subject>Rotation</subject><subject>Soil</subject><subject>Soil improvement</subject><subject>Soil organic matter</subject><subject>Soil Science &amp; Conservation</subject><subject>Soils</subject><subject>Stability</subject><subject>Substrates</subject><subject>Tillage</subject><issn>0178-2762</issn><issn>1432-0789</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUFvFSEUhYmxsc_qH3BhSNx0M3phYJhxYdK8VG3SpJu6JgzvMqWZGZ7A1PTfy_hq1S5cETjfPXA4hLxh8J4BqA8JoFaiAs4qYLKFij8jGyZqXoFqu-dkA0y1FVcNPyYvU7qFlWLdC3JcCyU7UasNidc3SNE5tJkGR80QA9qQ7lPGiU5mNgNOOBdtprmQO59y9P2SfTko_Ja6Zbbrzoy0zC77RP1MU_AjDXEws7fFJWeMH-kZjXjn8ccrcuTMmPD1w3pCvn0-v95-rS6vvlxszy4rKwXkyiqpLDfGuK5rDZOA0PbQgLWik0btOtv0zLVW8Zr1ygmGjWEWlRQ7MK7h9Qn5dPDdL_2EO1tiRDPqffSTifc6GK__VWZ_o4dwp1upoJZQDE4fDGL4vmDKevLJ4jiaGcOSNJddI6RSTBb03RP0NiyxfMpKKQZCKFgN-YGyMaQU0T0-hoFeK9WHSnWpVP-qVK8x3v4d43Hkd4cFqA9AKtI8YPxz939sfwKA0K4-</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Audette, Yuki</creator><creator>Congreves, Katelyn A.</creator><creator>Schneider, Kimberley</creator><creator>Zaro, Geovanna C.</creator><creator>Nunes, Amanda L. P.</creator><creator>Zhang, Hongjie</creator><creator>Voroney, R. Paul</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7T7</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M0K</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3954-2478</orcidid></search><sort><creationdate>20211001</creationdate><title>The effect of agroecosystem management on the distribution of C functional groups in soil organic matter: A review</title><author>Audette, Yuki ; Congreves, Katelyn A. ; Schneider, Kimberley ; Zaro, Geovanna C. ; Nunes, Amanda L. P. ; Zhang, Hongjie ; Voroney, R. Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-c757c2aaaf998a150e08b060cc495a7d9c6b1f8c7231b7f41e6a1ce754d0af623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agricultural ecosystems</topic><topic>Agricultural management</topic><topic>Agricultural practices</topic><topic>Agriculture</topic><topic>Analytical methods</topic><topic>Aromatic compounds</topic><topic>Biological fertilization</topic><topic>Biomedical and Life Sciences</topic><topic>Carbonyl compounds</topic><topic>Carbonyl groups</topic><topic>Carbonyls</topic><topic>Climate change</topic><topic>Climate change mitigation</topic><topic>Crop rotation</topic><topic>Crops</topic><topic>Distribution</topic><topic>Fertilization</topic><topic>Functional groups</topic><topic>Humification</topic><topic>Hydrophobicity</topic><topic>Legumes</topic><topic>Life Sciences</topic><topic>Liming</topic><topic>Magnetic resonance spectroscopy</topic><topic>Microorganisms</topic><topic>Mitigation</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Organic matter</topic><topic>Organic soils</topic><topic>Review</topic><topic>Rotation</topic><topic>Soil</topic><topic>Soil improvement</topic><topic>Soil organic matter</topic><topic>Soil Science &amp; Conservation</topic><topic>Soils</topic><topic>Stability</topic><topic>Substrates</topic><topic>Tillage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Audette, Yuki</creatorcontrib><creatorcontrib>Congreves, Katelyn A.</creatorcontrib><creatorcontrib>Schneider, Kimberley</creatorcontrib><creatorcontrib>Zaro, Geovanna C.</creatorcontrib><creatorcontrib>Nunes, Amanda L. P.</creatorcontrib><creatorcontrib>Zhang, Hongjie</creatorcontrib><creatorcontrib>Voroney, R. Paul</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biology and fertility of soils</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Audette, Yuki</au><au>Congreves, Katelyn A.</au><au>Schneider, Kimberley</au><au>Zaro, Geovanna C.</au><au>Nunes, Amanda L. P.</au><au>Zhang, Hongjie</au><au>Voroney, R. Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of agroecosystem management on the distribution of C functional groups in soil organic matter: A review</atitle><jtitle>Biology and fertility of soils</jtitle><stitle>Biol Fertil Soils</stitle><addtitle>Biol Fertil Soils</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>57</volume><issue>7</issue><spage>881</spage><epage>894</epage><pages>881-894</pages><issn>0178-2762</issn><eissn>1432-0789</eissn><abstract>To improve soil health and to aid in climate change mitigation, the quantity of soil organic matter (SOM) should be maintained or increased over the long run. In doing so, not only the total quantity of SOC but also the stability of SOC must be considered. Stability of SOC increases as a function of resistance to microbial decomposition or microbial substrate use efficiency through chemical, biological, and physical mechanisms including humification, hydrophobic moieties, molecular diversity, and formation of macroaggregates. One of the mechanisms that enhance stability confers changes in the distribution of C functional groups of SOM. To better understand and quantify how these changes are influenced by agricultural management practices, we collected 670 pairwise data from the body of literature that has evaluated changes in the distribution of C functional groups of SOM measured by solid-state 13 C NMR spectroscopy. The types of agricultural managements discussed herein include (1) fertilization, (2) tillage, (3) crop rotation, (4) grazing, and (5) liming practices. Our meta-analyses show that these practices modify the distribution of C functional groups of SOM. Fertilization practices were associated with increased O-alkyl groups. Tillage resulted in increases in the SOC consisted of aromatic and carbonyl groups. Crop rotations, especially legume-based rotations, were found to increase the proportion of aromatic groups. Although there are fewer publications on tillage and crop rotation than on fertilization practices, the distribution of C functional groups may be more influenced by crop rotation and tillage practices than fertilization management—and should be a focus of future research.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34759437</pmid><doi>10.1007/s00374-021-01580-2</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3954-2478</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-2762
ispartof Biology and fertility of soils, 2021-10, Vol.57 (7), p.881-894
issn 0178-2762
1432-0789
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8570350
source SpringerNature Journals
subjects Agricultural ecosystems
Agricultural management
Agricultural practices
Agriculture
Analytical methods
Aromatic compounds
Biological fertilization
Biomedical and Life Sciences
Carbonyl compounds
Carbonyl groups
Carbonyls
Climate change
Climate change mitigation
Crop rotation
Crops
Distribution
Fertilization
Functional groups
Humification
Hydrophobicity
Legumes
Life Sciences
Liming
Magnetic resonance spectroscopy
Microorganisms
Mitigation
NMR
NMR spectroscopy
Nuclear magnetic resonance
Organic matter
Organic soils
Review
Rotation
Soil
Soil improvement
Soil organic matter
Soil Science & Conservation
Soils
Stability
Substrates
Tillage
title The effect of agroecosystem management on the distribution of C functional groups in soil organic matter: A review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A32%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20agroecosystem%20management%20on%20the%20distribution%20of%20C%20functional%20groups%20in%20soil%20organic%20matter:%20A%20review&rft.jtitle=Biology%20and%20fertility%20of%20soils&rft.au=Audette,%20Yuki&rft.date=2021-10-01&rft.volume=57&rft.issue=7&rft.spage=881&rft.epage=894&rft.pages=881-894&rft.issn=0178-2762&rft.eissn=1432-0789&rft_id=info:doi/10.1007/s00374-021-01580-2&rft_dat=%3Cproquest_pubme%3E2571044700%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571044700&rft_id=info:pmid/34759437&rfr_iscdi=true