Ground electronic state description of thiourea coordination in homoleptic Zn2+, Ni2+ and Co2+ complexes using sulfur K‐edge X‐ray absorption spectroscopy

Sulfur K‐edge X‐ray absorption spectroscopy (XAS) was employed to experimentally characterize the coordinative bond between the thiourea (TU) or thiocarbamide ligand and transition metal (TM) ions Zn2+, Co2+ and Ni2+ in distorted tetrahedral and octahedral homoleptic coordination environments. Compa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of synchrotron radiation 2021-11, Vol.28 (6), p.1825-1838
Hauptverfasser: Queen, Matt S., Jalilehvand, Farideh, Szilagyi, Robert K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1838
container_issue 6
container_start_page 1825
container_title Journal of synchrotron radiation
container_volume 28
creator Queen, Matt S.
Jalilehvand, Farideh
Szilagyi, Robert K.
description Sulfur K‐edge X‐ray absorption spectroscopy (XAS) was employed to experimentally characterize the coordinative bond between the thiourea (TU) or thiocarbamide ligand and transition metal (TM) ions Zn2+, Co2+ and Ni2+ in distorted tetrahedral and octahedral homoleptic coordination environments. Comparisons of XAS spectra of the free TU ligand and [Zn(TU)4]2+, [Co(TU)4]2+ and [Ni(TU)6]2+ complexes clearly identify spectral features unique to TM2+–S(TU) bonding. Quantitative analysis of pre‐edge intensities describes the covalency of Ni2+—S(TU) and Co2+—S(TU) bonding to be at most 21% and 9% as expressed by the S 3p contributions per TM 3d electron hole. Using relevant Ni2+ complexes with dithiocarbamate and thioether ligands, we evaluated the empirical S 1s → 3p transition dipole integrals developed for S‐donor ligands and their dependence on heteroatom substitutions. With the aid of density functional theory‐based ground electronic state calculations, we found evidence for the need of using a transition dipole that is dependent on the presence of conjugated heteroatom (N) substitution in these S‐donor ligands. Sulfur K‐edge X‐ray absorption spectroscopy in combination with electronic structure calculations defines the ground state bonding in Ni2+ and Co2+ thiourea complexes. For spectral analysis the S 1s → 3p transition dipole integrals were developed and transition metal ion–thiourea bond covalencies determined.
doi_str_mv 10.1107/S1600577521008389
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8570210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593607369</sourcerecordid><originalsourceid>FETCH-LOGICAL-o3214-f81cc76d5eeb632b06774225caaac87ea4637a8d571573321a889c8ce1bce3ac3</originalsourceid><addsrcrecordid>eNplkktuFDEQhlsIRB5wAHYWbJDCgB_tdvcmEhqRBIhgEZCAjeWurplx1ONq7O7A7DgCJ-BwnARPJkI8Vv5V9fmvh6ooHgj-VAhunl2IinNtjJaC81rVza1ifxuabWO3_9B7xUFKl5yLykh1t9hTpcm0qvaLH6eRptAx7BHGSMEDS6MbkXWYIPph9BQYLdi48jRFdAyIYueDu074wFa0ph4zB-xTkEdP2Bsvj5jLlnPKAmg99PgVE5uSD0uWpn4xRfb657fv2C2Rfcgiug1zbaK4q5aG61YS0LC5V9xZuD7h_Zv3sHh_8uLd_Gx2_vb05fz5-YyUFOVsUQsAU3Uasa2UbHllTCmlBucc1AZdWSnj6k4boY3KX1xdN1ADihZQOVCHxfHOd5jaNXaAYYyut0P0axc3lpy3f2eCX9klXdlaG563nw0e7gwojd4m8CPCCiiEPIsVTS0zmKHHN1UifZ4wjXbtE2Dfu4A0JSt1U8rGaFNm9NE_6GXef8g72FKq4kZVTaaaHfXF97j53a7gdnsf9r_7sK8uPsqzE13KUv0CUHyy0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593607369</pqid></control><display><type>article</type><title>Ground electronic state description of thiourea coordination in homoleptic Zn2+, Ni2+ and Co2+ complexes using sulfur K‐edge X‐ray absorption spectroscopy</title><source>Wiley-Blackwell Open Access Titles</source><creator>Queen, Matt S. ; Jalilehvand, Farideh ; Szilagyi, Robert K.</creator><creatorcontrib>Queen, Matt S. ; Jalilehvand, Farideh ; Szilagyi, Robert K. ; Montana State Univ., Bozeman, MT (United States) ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</creatorcontrib><description>Sulfur K‐edge X‐ray absorption spectroscopy (XAS) was employed to experimentally characterize the coordinative bond between the thiourea (TU) or thiocarbamide ligand and transition metal (TM) ions Zn2+, Co2+ and Ni2+ in distorted tetrahedral and octahedral homoleptic coordination environments. Comparisons of XAS spectra of the free TU ligand and [Zn(TU)4]2+, [Co(TU)4]2+ and [Ni(TU)6]2+ complexes clearly identify spectral features unique to TM2+–S(TU) bonding. Quantitative analysis of pre‐edge intensities describes the covalency of Ni2+—S(TU) and Co2+—S(TU) bonding to be at most 21% and 9% as expressed by the S 3p contributions per TM 3d electron hole. Using relevant Ni2+ complexes with dithiocarbamate and thioether ligands, we evaluated the empirical S 1s → 3p transition dipole integrals developed for S‐donor ligands and their dependence on heteroatom substitutions. With the aid of density functional theory‐based ground electronic state calculations, we found evidence for the need of using a transition dipole that is dependent on the presence of conjugated heteroatom (N) substitution in these S‐donor ligands. Sulfur K‐edge X‐ray absorption spectroscopy in combination with electronic structure calculations defines the ground state bonding in Ni2+ and Co2+ thiourea complexes. For spectral analysis the S 1s → 3p transition dipole integrals were developed and transition metal ion–thiourea bond covalencies determined.</description><identifier>ISSN: 1600-5775</identifier><identifier>ISSN: 0909-0495</identifier><identifier>EISSN: 1600-5775</identifier><identifier>DOI: 10.1107/S1600577521008389</identifier><identifier>PMID: 34738936</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Absorption spectroscopy ; Bonding ; Cobalt ; Coordination ; Density functional theory ; Dipoles ; Electron states ; Empirical analysis ; ground electronic state ; Holes (electron deficiencies) ; Ligands ; metal–ligand bond covalency ; molecular orbital composition ; Nickel ; RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY ; Research Papers ; S-donor ligand ; Spectrum analysis ; Sulfur ; sulfur K-edge XANES ; Thioureas ; transition dipole integral ; Transition metals ; versatile S-donor ligand</subject><ispartof>Journal of synchrotron radiation, 2021-11, Vol.28 (6), p.1825-1838</ispartof><rights>2021 Matt S. Queen et al. published by IUCr Journals.</rights><rights>Copyright Wiley Subscription Services, Inc. Nov 2021</rights><rights>Matt S. Queen et al. 2021 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000293146222 ; 0000000262988187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8570210/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8570210/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1107%2FS1600577521008389$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1982857$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Queen, Matt S.</creatorcontrib><creatorcontrib>Jalilehvand, Farideh</creatorcontrib><creatorcontrib>Szilagyi, Robert K.</creatorcontrib><creatorcontrib>Montana State Univ., Bozeman, MT (United States)</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</creatorcontrib><title>Ground electronic state description of thiourea coordination in homoleptic Zn2+, Ni2+ and Co2+ complexes using sulfur K‐edge X‐ray absorption spectroscopy</title><title>Journal of synchrotron radiation</title><description>Sulfur K‐edge X‐ray absorption spectroscopy (XAS) was employed to experimentally characterize the coordinative bond between the thiourea (TU) or thiocarbamide ligand and transition metal (TM) ions Zn2+, Co2+ and Ni2+ in distorted tetrahedral and octahedral homoleptic coordination environments. Comparisons of XAS spectra of the free TU ligand and [Zn(TU)4]2+, [Co(TU)4]2+ and [Ni(TU)6]2+ complexes clearly identify spectral features unique to TM2+–S(TU) bonding. Quantitative analysis of pre‐edge intensities describes the covalency of Ni2+—S(TU) and Co2+—S(TU) bonding to be at most 21% and 9% as expressed by the S 3p contributions per TM 3d electron hole. Using relevant Ni2+ complexes with dithiocarbamate and thioether ligands, we evaluated the empirical S 1s → 3p transition dipole integrals developed for S‐donor ligands and their dependence on heteroatom substitutions. With the aid of density functional theory‐based ground electronic state calculations, we found evidence for the need of using a transition dipole that is dependent on the presence of conjugated heteroatom (N) substitution in these S‐donor ligands. Sulfur K‐edge X‐ray absorption spectroscopy in combination with electronic structure calculations defines the ground state bonding in Ni2+ and Co2+ thiourea complexes. For spectral analysis the S 1s → 3p transition dipole integrals were developed and transition metal ion–thiourea bond covalencies determined.</description><subject>Absorption spectroscopy</subject><subject>Bonding</subject><subject>Cobalt</subject><subject>Coordination</subject><subject>Density functional theory</subject><subject>Dipoles</subject><subject>Electron states</subject><subject>Empirical analysis</subject><subject>ground electronic state</subject><subject>Holes (electron deficiencies)</subject><subject>Ligands</subject><subject>metal–ligand bond covalency</subject><subject>molecular orbital composition</subject><subject>Nickel</subject><subject>RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY</subject><subject>Research Papers</subject><subject>S-donor ligand</subject><subject>Spectrum analysis</subject><subject>Sulfur</subject><subject>sulfur K-edge XANES</subject><subject>Thioureas</subject><subject>transition dipole integral</subject><subject>Transition metals</subject><subject>versatile S-donor ligand</subject><issn>1600-5775</issn><issn>0909-0495</issn><issn>1600-5775</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNplkktuFDEQhlsIRB5wAHYWbJDCgB_tdvcmEhqRBIhgEZCAjeWurplx1ONq7O7A7DgCJ-BwnARPJkI8Vv5V9fmvh6ooHgj-VAhunl2IinNtjJaC81rVza1ifxuabWO3_9B7xUFKl5yLykh1t9hTpcm0qvaLH6eRptAx7BHGSMEDS6MbkXWYIPph9BQYLdi48jRFdAyIYueDu074wFa0ph4zB-xTkEdP2Bsvj5jLlnPKAmg99PgVE5uSD0uWpn4xRfb657fv2C2Rfcgiug1zbaK4q5aG61YS0LC5V9xZuD7h_Zv3sHh_8uLd_Gx2_vb05fz5-YyUFOVsUQsAU3Uasa2UbHllTCmlBucc1AZdWSnj6k4boY3KX1xdN1ADihZQOVCHxfHOd5jaNXaAYYyut0P0axc3lpy3f2eCX9klXdlaG563nw0e7gwojd4m8CPCCiiEPIsVTS0zmKHHN1UifZ4wjXbtE2Dfu4A0JSt1U8rGaFNm9NE_6GXef8g72FKq4kZVTaaaHfXF97j53a7gdnsf9r_7sK8uPsqzE13KUv0CUHyy0g</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Queen, Matt S.</creator><creator>Jalilehvand, Farideh</creator><creator>Szilagyi, Robert K.</creator><general>International Union of Crystallography</general><general>John Wiley &amp; Sons, Inc</general><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000000293146222</orcidid><orcidid>https://orcid.org/0000000262988187</orcidid></search><sort><creationdate>202111</creationdate><title>Ground electronic state description of thiourea coordination in homoleptic Zn2+, Ni2+ and Co2+ complexes using sulfur K‐edge X‐ray absorption spectroscopy</title><author>Queen, Matt S. ; Jalilehvand, Farideh ; Szilagyi, Robert K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o3214-f81cc76d5eeb632b06774225caaac87ea4637a8d571573321a889c8ce1bce3ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption spectroscopy</topic><topic>Bonding</topic><topic>Cobalt</topic><topic>Coordination</topic><topic>Density functional theory</topic><topic>Dipoles</topic><topic>Electron states</topic><topic>Empirical analysis</topic><topic>ground electronic state</topic><topic>Holes (electron deficiencies)</topic><topic>Ligands</topic><topic>metal–ligand bond covalency</topic><topic>molecular orbital composition</topic><topic>Nickel</topic><topic>RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY</topic><topic>Research Papers</topic><topic>S-donor ligand</topic><topic>Spectrum analysis</topic><topic>Sulfur</topic><topic>sulfur K-edge XANES</topic><topic>Thioureas</topic><topic>transition dipole integral</topic><topic>Transition metals</topic><topic>versatile S-donor ligand</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Queen, Matt S.</creatorcontrib><creatorcontrib>Jalilehvand, Farideh</creatorcontrib><creatorcontrib>Szilagyi, Robert K.</creatorcontrib><creatorcontrib>Montana State Univ., Bozeman, MT (United States)</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of synchrotron radiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Queen, Matt S.</au><au>Jalilehvand, Farideh</au><au>Szilagyi, Robert K.</au><aucorp>Montana State Univ., Bozeman, MT (United States)</aucorp><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ground electronic state description of thiourea coordination in homoleptic Zn2+, Ni2+ and Co2+ complexes using sulfur K‐edge X‐ray absorption spectroscopy</atitle><jtitle>Journal of synchrotron radiation</jtitle><date>2021-11</date><risdate>2021</risdate><volume>28</volume><issue>6</issue><spage>1825</spage><epage>1838</epage><pages>1825-1838</pages><issn>1600-5775</issn><issn>0909-0495</issn><eissn>1600-5775</eissn><abstract>Sulfur K‐edge X‐ray absorption spectroscopy (XAS) was employed to experimentally characterize the coordinative bond between the thiourea (TU) or thiocarbamide ligand and transition metal (TM) ions Zn2+, Co2+ and Ni2+ in distorted tetrahedral and octahedral homoleptic coordination environments. Comparisons of XAS spectra of the free TU ligand and [Zn(TU)4]2+, [Co(TU)4]2+ and [Ni(TU)6]2+ complexes clearly identify spectral features unique to TM2+–S(TU) bonding. Quantitative analysis of pre‐edge intensities describes the covalency of Ni2+—S(TU) and Co2+—S(TU) bonding to be at most 21% and 9% as expressed by the S 3p contributions per TM 3d electron hole. Using relevant Ni2+ complexes with dithiocarbamate and thioether ligands, we evaluated the empirical S 1s → 3p transition dipole integrals developed for S‐donor ligands and their dependence on heteroatom substitutions. With the aid of density functional theory‐based ground electronic state calculations, we found evidence for the need of using a transition dipole that is dependent on the presence of conjugated heteroatom (N) substitution in these S‐donor ligands. Sulfur K‐edge X‐ray absorption spectroscopy in combination with electronic structure calculations defines the ground state bonding in Ni2+ and Co2+ thiourea complexes. For spectral analysis the S 1s → 3p transition dipole integrals were developed and transition metal ion–thiourea bond covalencies determined.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>34738936</pmid><doi>10.1107/S1600577521008389</doi><tpages>14</tpages><orcidid>https://orcid.org/0000000293146222</orcidid><orcidid>https://orcid.org/0000000262988187</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1600-5775
ispartof Journal of synchrotron radiation, 2021-11, Vol.28 (6), p.1825-1838
issn 1600-5775
0909-0495
1600-5775
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8570210
source Wiley-Blackwell Open Access Titles
subjects Absorption spectroscopy
Bonding
Cobalt
Coordination
Density functional theory
Dipoles
Electron states
Empirical analysis
ground electronic state
Holes (electron deficiencies)
Ligands
metal–ligand bond covalency
molecular orbital composition
Nickel
RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY
Research Papers
S-donor ligand
Spectrum analysis
Sulfur
sulfur K-edge XANES
Thioureas
transition dipole integral
Transition metals
versatile S-donor ligand
title Ground electronic state description of thiourea coordination in homoleptic Zn2+, Ni2+ and Co2+ complexes using sulfur K‐edge X‐ray absorption spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A10%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ground%20electronic%20state%20description%20of%20thiourea%20coordination%20in%20homoleptic%20Zn2+,%20Ni2+%20and%20Co2+%20complexes%20using%20sulfur%20K%E2%80%90edge%20X%E2%80%90ray%20absorption%20spectroscopy&rft.jtitle=Journal%20of%20synchrotron%20radiation&rft.au=Queen,%20Matt%20S.&rft.aucorp=Montana%20State%20Univ.,%20Bozeman,%20MT%20(United%20States)&rft.date=2021-11&rft.volume=28&rft.issue=6&rft.spage=1825&rft.epage=1838&rft.pages=1825-1838&rft.issn=1600-5775&rft.eissn=1600-5775&rft_id=info:doi/10.1107/S1600577521008389&rft_dat=%3Cproquest_24P%3E2593607369%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593607369&rft_id=info:pmid/34738936&rfr_iscdi=true