Structural Heterogeneity of Human Histone H2A.1

Histones are highly basic chromatin proteins that tightly package and order eukaryotic DNA into nucleosomes. While the atomic structure of the nucleosomes has been determined, the three-dimensional structure of DNA-free histones remains unresolved. Here, we combine tandem nonlinear and linear ion mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2021-05, Vol.125 (19), p.4977-4986
Hauptverfasser: Pham, Khoa N, Mamun, Yasir, Fernandez-Lima, Francisco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4986
container_issue 19
container_start_page 4977
container_title The journal of physical chemistry. B
container_volume 125
creator Pham, Khoa N
Mamun, Yasir
Fernandez-Lima, Francisco
description Histones are highly basic chromatin proteins that tightly package and order eukaryotic DNA into nucleosomes. While the atomic structure of the nucleosomes has been determined, the three-dimensional structure of DNA-free histones remains unresolved. Here, we combine tandem nonlinear and linear ion mobility spectrometry (FAIMS-TIMS) coupled to mass spectrometry in parallel with molecular modeling to study the conformational space of a DNA-free histone H2A type 1 (H2A.1). Experimental results showed the dependence of the gas-phase structures on the starting solution conditions, characterized by charge state distributions, mobility distributions, and collision-induced-unfolding pathways. The measured H2A.1 gas-phase structures showed a high diversity of structural features ranging from compact (C) to partially folded (P) and then highly elongated (E) conformations. Molecular dynamics simulations provided candidate structures for the solution H2A.1 native conformation with folded N- and C-terminal tails, as well as gas-phase candidate structures associated with the mobility trends. Complementary collision cross section and dipole calculations showed that the charge distribution in the case of elongated gas-phase structures, where basic and acidic residues are mostly exposed (e.g., z > 15+), is sufficient to induce differences in the dipole alignment at high electric fields, in good agreement with the trends observed during the FAIMS-TIMS experiments.
doi_str_mv 10.1021/acs.jpcb.1c00335
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8568062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2526144628</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-86fa509f520c2b5800d7091623b66a017e4519f3a14260fc1882dcb14703bd823</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxoMobk7vnqRHD7Z7Sdo0vQhjqBUGHtRzSNN0drTNTFph_72Zq6IHD488yPd97-OH0CWGCAPBc6lctNmqIsIKgNLkCE1xQiD0kx6PO8PAJujMuQ0ASQhnp2hCaZbGHPAUzZ97O6h-sLIJct1ra9a603W_C0wV5EMruyCvXW86HeRkEeFzdFLJxumL8Z2h1_u7l2Uerp4eHpeLVShjSvuQs0omkFW-gCJFwgHKFDLMCC0Yk4BTHSc4q6jEMWFQKcw5KVWB4xRoUXJCZ-j2kLsdilaXSne9ryi2tm6l3Qkja_H3p6vfxNp8CJ4wDmwfcD0GWPM-aNeLtnZKN43stBmc8CgYjmNGuJfCQaqscc7q6ucMBrHnLDxnsecsRs7ecvW73o_hG6wX3BwEX1Yz2M7T-j_vE9wXh5k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2526144628</pqid></control><display><type>article</type><title>Structural Heterogeneity of Human Histone H2A.1</title><source>MEDLINE</source><source>ACS Publications</source><creator>Pham, Khoa N ; Mamun, Yasir ; Fernandez-Lima, Francisco</creator><creatorcontrib>Pham, Khoa N ; Mamun, Yasir ; Fernandez-Lima, Francisco</creatorcontrib><description>Histones are highly basic chromatin proteins that tightly package and order eukaryotic DNA into nucleosomes. While the atomic structure of the nucleosomes has been determined, the three-dimensional structure of DNA-free histones remains unresolved. Here, we combine tandem nonlinear and linear ion mobility spectrometry (FAIMS-TIMS) coupled to mass spectrometry in parallel with molecular modeling to study the conformational space of a DNA-free histone H2A type 1 (H2A.1). Experimental results showed the dependence of the gas-phase structures on the starting solution conditions, characterized by charge state distributions, mobility distributions, and collision-induced-unfolding pathways. The measured H2A.1 gas-phase structures showed a high diversity of structural features ranging from compact (C) to partially folded (P) and then highly elongated (E) conformations. Molecular dynamics simulations provided candidate structures for the solution H2A.1 native conformation with folded N- and C-terminal tails, as well as gas-phase candidate structures associated with the mobility trends. Complementary collision cross section and dipole calculations showed that the charge distribution in the case of elongated gas-phase structures, where basic and acidic residues are mostly exposed (e.g., z &gt; 15+), is sufficient to induce differences in the dipole alignment at high electric fields, in good agreement with the trends observed during the FAIMS-TIMS experiments.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.1c00335</identifier><identifier>PMID: 33974801</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Biophysical and Biochemical Systems and Processes ; DNA ; Histones - metabolism ; Humans ; Ion Mobility Spectrometry ; Molecular Dynamics Simulation ; Nucleosomes</subject><ispartof>The journal of physical chemistry. B, 2021-05, Vol.125 (19), p.4977-4986</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-86fa509f520c2b5800d7091623b66a017e4519f3a14260fc1882dcb14703bd823</citedby><cites>FETCH-LOGICAL-a433t-86fa509f520c2b5800d7091623b66a017e4519f3a14260fc1882dcb14703bd823</cites><orcidid>0000-0001-7449-1226 ; 0000-0002-1283-4390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.1c00335$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.1c00335$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33974801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pham, Khoa N</creatorcontrib><creatorcontrib>Mamun, Yasir</creatorcontrib><creatorcontrib>Fernandez-Lima, Francisco</creatorcontrib><title>Structural Heterogeneity of Human Histone H2A.1</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Histones are highly basic chromatin proteins that tightly package and order eukaryotic DNA into nucleosomes. While the atomic structure of the nucleosomes has been determined, the three-dimensional structure of DNA-free histones remains unresolved. Here, we combine tandem nonlinear and linear ion mobility spectrometry (FAIMS-TIMS) coupled to mass spectrometry in parallel with molecular modeling to study the conformational space of a DNA-free histone H2A type 1 (H2A.1). Experimental results showed the dependence of the gas-phase structures on the starting solution conditions, characterized by charge state distributions, mobility distributions, and collision-induced-unfolding pathways. The measured H2A.1 gas-phase structures showed a high diversity of structural features ranging from compact (C) to partially folded (P) and then highly elongated (E) conformations. Molecular dynamics simulations provided candidate structures for the solution H2A.1 native conformation with folded N- and C-terminal tails, as well as gas-phase candidate structures associated with the mobility trends. Complementary collision cross section and dipole calculations showed that the charge distribution in the case of elongated gas-phase structures, where basic and acidic residues are mostly exposed (e.g., z &gt; 15+), is sufficient to induce differences in the dipole alignment at high electric fields, in good agreement with the trends observed during the FAIMS-TIMS experiments.</description><subject>B: Biophysical and Biochemical Systems and Processes</subject><subject>DNA</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Ion Mobility Spectrometry</subject><subject>Molecular Dynamics Simulation</subject><subject>Nucleosomes</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMFLwzAUxoMobk7vnqRHD7Z7Sdo0vQhjqBUGHtRzSNN0drTNTFph_72Zq6IHD488yPd97-OH0CWGCAPBc6lctNmqIsIKgNLkCE1xQiD0kx6PO8PAJujMuQ0ASQhnp2hCaZbGHPAUzZ97O6h-sLIJct1ra9a603W_C0wV5EMruyCvXW86HeRkEeFzdFLJxumL8Z2h1_u7l2Uerp4eHpeLVShjSvuQs0omkFW-gCJFwgHKFDLMCC0Yk4BTHSc4q6jEMWFQKcw5KVWB4xRoUXJCZ-j2kLsdilaXSne9ryi2tm6l3Qkja_H3p6vfxNp8CJ4wDmwfcD0GWPM-aNeLtnZKN43stBmc8CgYjmNGuJfCQaqscc7q6ucMBrHnLDxnsecsRs7ecvW73o_hG6wX3BwEX1Yz2M7T-j_vE9wXh5k</recordid><startdate>20210520</startdate><enddate>20210520</enddate><creator>Pham, Khoa N</creator><creator>Mamun, Yasir</creator><creator>Fernandez-Lima, Francisco</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7449-1226</orcidid><orcidid>https://orcid.org/0000-0002-1283-4390</orcidid></search><sort><creationdate>20210520</creationdate><title>Structural Heterogeneity of Human Histone H2A.1</title><author>Pham, Khoa N ; Mamun, Yasir ; Fernandez-Lima, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-86fa509f520c2b5800d7091623b66a017e4519f3a14260fc1882dcb14703bd823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>B: Biophysical and Biochemical Systems and Processes</topic><topic>DNA</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Ion Mobility Spectrometry</topic><topic>Molecular Dynamics Simulation</topic><topic>Nucleosomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Khoa N</creatorcontrib><creatorcontrib>Mamun, Yasir</creatorcontrib><creatorcontrib>Fernandez-Lima, Francisco</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Khoa N</au><au>Mamun, Yasir</au><au>Fernandez-Lima, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Heterogeneity of Human Histone H2A.1</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2021-05-20</date><risdate>2021</risdate><volume>125</volume><issue>19</issue><spage>4977</spage><epage>4986</epage><pages>4977-4986</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Histones are highly basic chromatin proteins that tightly package and order eukaryotic DNA into nucleosomes. While the atomic structure of the nucleosomes has been determined, the three-dimensional structure of DNA-free histones remains unresolved. Here, we combine tandem nonlinear and linear ion mobility spectrometry (FAIMS-TIMS) coupled to mass spectrometry in parallel with molecular modeling to study the conformational space of a DNA-free histone H2A type 1 (H2A.1). Experimental results showed the dependence of the gas-phase structures on the starting solution conditions, characterized by charge state distributions, mobility distributions, and collision-induced-unfolding pathways. The measured H2A.1 gas-phase structures showed a high diversity of structural features ranging from compact (C) to partially folded (P) and then highly elongated (E) conformations. Molecular dynamics simulations provided candidate structures for the solution H2A.1 native conformation with folded N- and C-terminal tails, as well as gas-phase candidate structures associated with the mobility trends. Complementary collision cross section and dipole calculations showed that the charge distribution in the case of elongated gas-phase structures, where basic and acidic residues are mostly exposed (e.g., z &gt; 15+), is sufficient to induce differences in the dipole alignment at high electric fields, in good agreement with the trends observed during the FAIMS-TIMS experiments.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33974801</pmid><doi>10.1021/acs.jpcb.1c00335</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7449-1226</orcidid><orcidid>https://orcid.org/0000-0002-1283-4390</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2021-05, Vol.125 (19), p.4977-4986
issn 1520-6106
1520-5207
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8568062
source MEDLINE; ACS Publications
subjects B: Biophysical and Biochemical Systems and Processes
DNA
Histones - metabolism
Humans
Ion Mobility Spectrometry
Molecular Dynamics Simulation
Nucleosomes
title Structural Heterogeneity of Human Histone H2A.1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A38%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Heterogeneity%20of%20Human%20Histone%20H2A.1&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Pham,%20Khoa%20N&rft.date=2021-05-20&rft.volume=125&rft.issue=19&rft.spage=4977&rft.epage=4986&rft.pages=4977-4986&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.1c00335&rft_dat=%3Cproquest_pubme%3E2526144628%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2526144628&rft_id=info:pmid/33974801&rfr_iscdi=true