Structural Heterogeneity of Human Histone H2A.1
Histones are highly basic chromatin proteins that tightly package and order eukaryotic DNA into nucleosomes. While the atomic structure of the nucleosomes has been determined, the three-dimensional structure of DNA-free histones remains unresolved. Here, we combine tandem nonlinear and linear ion mo...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2021-05, Vol.125 (19), p.4977-4986 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4986 |
---|---|
container_issue | 19 |
container_start_page | 4977 |
container_title | The journal of physical chemistry. B |
container_volume | 125 |
creator | Pham, Khoa N Mamun, Yasir Fernandez-Lima, Francisco |
description | Histones are highly basic chromatin proteins that tightly package and order eukaryotic DNA into nucleosomes. While the atomic structure of the nucleosomes has been determined, the three-dimensional structure of DNA-free histones remains unresolved. Here, we combine tandem nonlinear and linear ion mobility spectrometry (FAIMS-TIMS) coupled to mass spectrometry in parallel with molecular modeling to study the conformational space of a DNA-free histone H2A type 1 (H2A.1). Experimental results showed the dependence of the gas-phase structures on the starting solution conditions, characterized by charge state distributions, mobility distributions, and collision-induced-unfolding pathways. The measured H2A.1 gas-phase structures showed a high diversity of structural features ranging from compact (C) to partially folded (P) and then highly elongated (E) conformations. Molecular dynamics simulations provided candidate structures for the solution H2A.1 native conformation with folded N- and C-terminal tails, as well as gas-phase candidate structures associated with the mobility trends. Complementary collision cross section and dipole calculations showed that the charge distribution in the case of elongated gas-phase structures, where basic and acidic residues are mostly exposed (e.g., z > 15+), is sufficient to induce differences in the dipole alignment at high electric fields, in good agreement with the trends observed during the FAIMS-TIMS experiments. |
doi_str_mv | 10.1021/acs.jpcb.1c00335 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8568062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2526144628</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-86fa509f520c2b5800d7091623b66a017e4519f3a14260fc1882dcb14703bd823</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxoMobk7vnqRHD7Z7Sdo0vQhjqBUGHtRzSNN0drTNTFph_72Zq6IHD488yPd97-OH0CWGCAPBc6lctNmqIsIKgNLkCE1xQiD0kx6PO8PAJujMuQ0ASQhnp2hCaZbGHPAUzZ97O6h-sLIJct1ra9a603W_C0wV5EMruyCvXW86HeRkEeFzdFLJxumL8Z2h1_u7l2Uerp4eHpeLVShjSvuQs0omkFW-gCJFwgHKFDLMCC0Yk4BTHSc4q6jEMWFQKcw5KVWB4xRoUXJCZ-j2kLsdilaXSne9ryi2tm6l3Qkja_H3p6vfxNp8CJ4wDmwfcD0GWPM-aNeLtnZKN43stBmc8CgYjmNGuJfCQaqscc7q6ucMBrHnLDxnsecsRs7ecvW73o_hG6wX3BwEX1Yz2M7T-j_vE9wXh5k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2526144628</pqid></control><display><type>article</type><title>Structural Heterogeneity of Human Histone H2A.1</title><source>MEDLINE</source><source>ACS Publications</source><creator>Pham, Khoa N ; Mamun, Yasir ; Fernandez-Lima, Francisco</creator><creatorcontrib>Pham, Khoa N ; Mamun, Yasir ; Fernandez-Lima, Francisco</creatorcontrib><description>Histones are highly basic chromatin proteins that tightly package and order eukaryotic DNA into nucleosomes. While the atomic structure of the nucleosomes has been determined, the three-dimensional structure of DNA-free histones remains unresolved. Here, we combine tandem nonlinear and linear ion mobility spectrometry (FAIMS-TIMS) coupled to mass spectrometry in parallel with molecular modeling to study the conformational space of a DNA-free histone H2A type 1 (H2A.1). Experimental results showed the dependence of the gas-phase structures on the starting solution conditions, characterized by charge state distributions, mobility distributions, and collision-induced-unfolding pathways. The measured H2A.1 gas-phase structures showed a high diversity of structural features ranging from compact (C) to partially folded (P) and then highly elongated (E) conformations. Molecular dynamics simulations provided candidate structures for the solution H2A.1 native conformation with folded N- and C-terminal tails, as well as gas-phase candidate structures associated with the mobility trends. Complementary collision cross section and dipole calculations showed that the charge distribution in the case of elongated gas-phase structures, where basic and acidic residues are mostly exposed (e.g., z > 15+), is sufficient to induce differences in the dipole alignment at high electric fields, in good agreement with the trends observed during the FAIMS-TIMS experiments.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.1c00335</identifier><identifier>PMID: 33974801</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Biophysical and Biochemical Systems and Processes ; DNA ; Histones - metabolism ; Humans ; Ion Mobility Spectrometry ; Molecular Dynamics Simulation ; Nucleosomes</subject><ispartof>The journal of physical chemistry. B, 2021-05, Vol.125 (19), p.4977-4986</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-86fa509f520c2b5800d7091623b66a017e4519f3a14260fc1882dcb14703bd823</citedby><cites>FETCH-LOGICAL-a433t-86fa509f520c2b5800d7091623b66a017e4519f3a14260fc1882dcb14703bd823</cites><orcidid>0000-0001-7449-1226 ; 0000-0002-1283-4390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.1c00335$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.1c00335$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33974801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pham, Khoa N</creatorcontrib><creatorcontrib>Mamun, Yasir</creatorcontrib><creatorcontrib>Fernandez-Lima, Francisco</creatorcontrib><title>Structural Heterogeneity of Human Histone H2A.1</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Histones are highly basic chromatin proteins that tightly package and order eukaryotic DNA into nucleosomes. While the atomic structure of the nucleosomes has been determined, the three-dimensional structure of DNA-free histones remains unresolved. Here, we combine tandem nonlinear and linear ion mobility spectrometry (FAIMS-TIMS) coupled to mass spectrometry in parallel with molecular modeling to study the conformational space of a DNA-free histone H2A type 1 (H2A.1). Experimental results showed the dependence of the gas-phase structures on the starting solution conditions, characterized by charge state distributions, mobility distributions, and collision-induced-unfolding pathways. The measured H2A.1 gas-phase structures showed a high diversity of structural features ranging from compact (C) to partially folded (P) and then highly elongated (E) conformations. Molecular dynamics simulations provided candidate structures for the solution H2A.1 native conformation with folded N- and C-terminal tails, as well as gas-phase candidate structures associated with the mobility trends. Complementary collision cross section and dipole calculations showed that the charge distribution in the case of elongated gas-phase structures, where basic and acidic residues are mostly exposed (e.g., z > 15+), is sufficient to induce differences in the dipole alignment at high electric fields, in good agreement with the trends observed during the FAIMS-TIMS experiments.</description><subject>B: Biophysical and Biochemical Systems and Processes</subject><subject>DNA</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Ion Mobility Spectrometry</subject><subject>Molecular Dynamics Simulation</subject><subject>Nucleosomes</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMFLwzAUxoMobk7vnqRHD7Z7Sdo0vQhjqBUGHtRzSNN0drTNTFph_72Zq6IHD488yPd97-OH0CWGCAPBc6lctNmqIsIKgNLkCE1xQiD0kx6PO8PAJujMuQ0ASQhnp2hCaZbGHPAUzZ97O6h-sLIJct1ra9a603W_C0wV5EMruyCvXW86HeRkEeFzdFLJxumL8Z2h1_u7l2Uerp4eHpeLVShjSvuQs0omkFW-gCJFwgHKFDLMCC0Yk4BTHSc4q6jEMWFQKcw5KVWB4xRoUXJCZ-j2kLsdilaXSne9ryi2tm6l3Qkja_H3p6vfxNp8CJ4wDmwfcD0GWPM-aNeLtnZKN43stBmc8CgYjmNGuJfCQaqscc7q6ucMBrHnLDxnsecsRs7ecvW73o_hG6wX3BwEX1Yz2M7T-j_vE9wXh5k</recordid><startdate>20210520</startdate><enddate>20210520</enddate><creator>Pham, Khoa N</creator><creator>Mamun, Yasir</creator><creator>Fernandez-Lima, Francisco</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7449-1226</orcidid><orcidid>https://orcid.org/0000-0002-1283-4390</orcidid></search><sort><creationdate>20210520</creationdate><title>Structural Heterogeneity of Human Histone H2A.1</title><author>Pham, Khoa N ; Mamun, Yasir ; Fernandez-Lima, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-86fa509f520c2b5800d7091623b66a017e4519f3a14260fc1882dcb14703bd823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>B: Biophysical and Biochemical Systems and Processes</topic><topic>DNA</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Ion Mobility Spectrometry</topic><topic>Molecular Dynamics Simulation</topic><topic>Nucleosomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Khoa N</creatorcontrib><creatorcontrib>Mamun, Yasir</creatorcontrib><creatorcontrib>Fernandez-Lima, Francisco</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Khoa N</au><au>Mamun, Yasir</au><au>Fernandez-Lima, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Heterogeneity of Human Histone H2A.1</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2021-05-20</date><risdate>2021</risdate><volume>125</volume><issue>19</issue><spage>4977</spage><epage>4986</epage><pages>4977-4986</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Histones are highly basic chromatin proteins that tightly package and order eukaryotic DNA into nucleosomes. While the atomic structure of the nucleosomes has been determined, the three-dimensional structure of DNA-free histones remains unresolved. Here, we combine tandem nonlinear and linear ion mobility spectrometry (FAIMS-TIMS) coupled to mass spectrometry in parallel with molecular modeling to study the conformational space of a DNA-free histone H2A type 1 (H2A.1). Experimental results showed the dependence of the gas-phase structures on the starting solution conditions, characterized by charge state distributions, mobility distributions, and collision-induced-unfolding pathways. The measured H2A.1 gas-phase structures showed a high diversity of structural features ranging from compact (C) to partially folded (P) and then highly elongated (E) conformations. Molecular dynamics simulations provided candidate structures for the solution H2A.1 native conformation with folded N- and C-terminal tails, as well as gas-phase candidate structures associated with the mobility trends. Complementary collision cross section and dipole calculations showed that the charge distribution in the case of elongated gas-phase structures, where basic and acidic residues are mostly exposed (e.g., z > 15+), is sufficient to induce differences in the dipole alignment at high electric fields, in good agreement with the trends observed during the FAIMS-TIMS experiments.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33974801</pmid><doi>10.1021/acs.jpcb.1c00335</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7449-1226</orcidid><orcidid>https://orcid.org/0000-0002-1283-4390</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2021-05, Vol.125 (19), p.4977-4986 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8568062 |
source | MEDLINE; ACS Publications |
subjects | B: Biophysical and Biochemical Systems and Processes DNA Histones - metabolism Humans Ion Mobility Spectrometry Molecular Dynamics Simulation Nucleosomes |
title | Structural Heterogeneity of Human Histone H2A.1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A38%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Heterogeneity%20of%20Human%20Histone%20H2A.1&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Pham,%20Khoa%20N&rft.date=2021-05-20&rft.volume=125&rft.issue=19&rft.spage=4977&rft.epage=4986&rft.pages=4977-4986&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.1c00335&rft_dat=%3Cproquest_pubme%3E2526144628%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2526144628&rft_id=info:pmid/33974801&rfr_iscdi=true |