Computational Approaches for the Prediction of Environmental Transformation Products: Chlorination of Steroidal Enones

There is growing interest in the fate and effects of transformation products generated from emerging pollutant classes, and new tools that help predict the products most likely to form will aid in risk assessment. Here, using a family of structurally related steroids (enones, dienones, and trienones...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2021-11, Vol.55 (21), p.14658-14666
Hauptverfasser: Knutson, Christopher J, Pflug, Nicholas C, Yeung, Wyanna, Grobstein, Matthew, Patterson, Eric V, Cwiertny, David M, Gloer, James B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14666
container_issue 21
container_start_page 14658
container_title Environmental science & technology
container_volume 55
creator Knutson, Christopher J
Pflug, Nicholas C
Yeung, Wyanna
Grobstein, Matthew
Patterson, Eric V
Cwiertny, David M
Gloer, James B
description There is growing interest in the fate and effects of transformation products generated from emerging pollutant classes, and new tools that help predict the products most likely to form will aid in risk assessment. Here, using a family of structurally related steroids (enones, dienones, and trienones), we evaluate the use of density functional theory to help predict products from reaction with chlorine, a common chemical disinfectant. For steroidal dienones (e.g., dienogest) and trienones (e.g., 17β-trenbolone), computational data support that reactions proceed through spontaneous C4 chlorination to yield 4-chloro derivatives for trienones and, after further reaction, 9,10-epoxide structures for dienones. For testosterone, a simple steroidal enone, in silico predictions suggest that C4 chlorination is still most likely, but slow at environmentally relevant conditions. Predictions were then assessed through laboratory chlorination reactions (0.5–5 mg Cl2/L) with product characterization via HRMS and NMR, which confirmed near exclusive 4-chloro and 9,10-epoxide products for most trienones and all dienones, respectively. Also consistent with computational expectations, testosterone was effectively unreactive at these same chlorine levels, although products consistent with in silico predictions were observed at higher concentrations (in excess of 500 mg Cl2/L). Although slight deviations from in silico predictions were observed for steroids with electron-rich substituents (e.g., C17 allyl-substituted altrenogest), this work highlights the potential for computational approaches to improve our understanding of transformation products generated from emerging pollutant classes.
doi_str_mv 10.1021/acs.est.1c04659
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8567416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593909255</sourcerecordid><originalsourceid>FETCH-LOGICAL-a434t-a12addb2fcbcd7b8ca1a46a2e455da71ef8214221bb52341317c642876faf9e3</originalsourceid><addsrcrecordid>eNp1kc2L1EAUxBtR3HH17DXgRZDM9uuvJB6EZRg_YEHBOXhrXjodp5ekO3YnA_73dpxxQcHTO9SviuIVIS-BboEyuEGTtjbNWzBUKNk8IhuQjJaylvCYbCgFXjZcfbsiz1K6p5QyTuun5IoLxSvWiA057cI4LTPOLngcittpigHN0aaiD7GYj7b4Em3nzKoXoS_2_uRi8KP1c8YPEX3K4Pjbn9HQLWZOb4vdcQjRefxj-zrbGFyXLXsfvE3PyZMeh2RfXO41ObzfH3Yfy7vPHz7tbu9KFFzMJQLDrmtZb1rTVW1tEFAoZFZI2WEFtq8ZCMagbSXjAjhURglWV6rHvrH8mrw7x05LO9rO5NYRBz1FN2L8qQM6_bfi3VF_DyddS1UJUDng9SUghh9L_rQeXTJ2GNDbsCTNZA25gqpYRl_9g96HJeanrlTDG9owKTN1c6ZMDClF2z-UAarXSXWeVK_uy6TZ8ebsWIWHyP_RvwC5SKaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593909255</pqid></control><display><type>article</type><title>Computational Approaches for the Prediction of Environmental Transformation Products: Chlorination of Steroidal Enones</title><source>ACS Publications</source><creator>Knutson, Christopher J ; Pflug, Nicholas C ; Yeung, Wyanna ; Grobstein, Matthew ; Patterson, Eric V ; Cwiertny, David M ; Gloer, James B</creator><creatorcontrib>Knutson, Christopher J ; Pflug, Nicholas C ; Yeung, Wyanna ; Grobstein, Matthew ; Patterson, Eric V ; Cwiertny, David M ; Gloer, James B</creatorcontrib><description>There is growing interest in the fate and effects of transformation products generated from emerging pollutant classes, and new tools that help predict the products most likely to form will aid in risk assessment. Here, using a family of structurally related steroids (enones, dienones, and trienones), we evaluate the use of density functional theory to help predict products from reaction with chlorine, a common chemical disinfectant. For steroidal dienones (e.g., dienogest) and trienones (e.g., 17β-trenbolone), computational data support that reactions proceed through spontaneous C4 chlorination to yield 4-chloro derivatives for trienones and, after further reaction, 9,10-epoxide structures for dienones. For testosterone, a simple steroidal enone, in silico predictions suggest that C4 chlorination is still most likely, but slow at environmentally relevant conditions. Predictions were then assessed through laboratory chlorination reactions (0.5–5 mg Cl2/L) with product characterization via HRMS and NMR, which confirmed near exclusive 4-chloro and 9,10-epoxide products for most trienones and all dienones, respectively. Also consistent with computational expectations, testosterone was effectively unreactive at these same chlorine levels, although products consistent with in silico predictions were observed at higher concentrations (in excess of 500 mg Cl2/L). Although slight deviations from in silico predictions were observed for steroids with electron-rich substituents (e.g., C17 allyl-substituted altrenogest), this work highlights the potential for computational approaches to improve our understanding of transformation products generated from emerging pollutant classes.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.1c04659</identifier><identifier>PMID: 34637294</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Chlorination ; Chlorine ; Computer applications ; Contaminants in Aquatic and Terrestrial Environments ; Density functional theory ; Disinfectants ; NMR ; Nuclear magnetic resonance ; Pollutants ; Predictions ; Risk assessment ; Steroid hormones ; Steroids ; Testosterone ; Transformations ; Trenbolone</subject><ispartof>Environmental science &amp; technology, 2021-11, Vol.55 (21), p.14658-14666</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Nov 2, 2021</rights><rights>2021 The Authors. Published by American Chemical Society 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a434t-a12addb2fcbcd7b8ca1a46a2e455da71ef8214221bb52341317c642876faf9e3</citedby><cites>FETCH-LOGICAL-a434t-a12addb2fcbcd7b8ca1a46a2e455da71ef8214221bb52341317c642876faf9e3</cites><orcidid>0000-0002-0310-7626 ; 0000-0002-9261-7571 ; 0000-0002-2023-2162 ; 0000-0001-6161-731X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.1c04659$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.1c04659$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Knutson, Christopher J</creatorcontrib><creatorcontrib>Pflug, Nicholas C</creatorcontrib><creatorcontrib>Yeung, Wyanna</creatorcontrib><creatorcontrib>Grobstein, Matthew</creatorcontrib><creatorcontrib>Patterson, Eric V</creatorcontrib><creatorcontrib>Cwiertny, David M</creatorcontrib><creatorcontrib>Gloer, James B</creatorcontrib><title>Computational Approaches for the Prediction of Environmental Transformation Products: Chlorination of Steroidal Enones</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>There is growing interest in the fate and effects of transformation products generated from emerging pollutant classes, and new tools that help predict the products most likely to form will aid in risk assessment. Here, using a family of structurally related steroids (enones, dienones, and trienones), we evaluate the use of density functional theory to help predict products from reaction with chlorine, a common chemical disinfectant. For steroidal dienones (e.g., dienogest) and trienones (e.g., 17β-trenbolone), computational data support that reactions proceed through spontaneous C4 chlorination to yield 4-chloro derivatives for trienones and, after further reaction, 9,10-epoxide structures for dienones. For testosterone, a simple steroidal enone, in silico predictions suggest that C4 chlorination is still most likely, but slow at environmentally relevant conditions. Predictions were then assessed through laboratory chlorination reactions (0.5–5 mg Cl2/L) with product characterization via HRMS and NMR, which confirmed near exclusive 4-chloro and 9,10-epoxide products for most trienones and all dienones, respectively. Also consistent with computational expectations, testosterone was effectively unreactive at these same chlorine levels, although products consistent with in silico predictions were observed at higher concentrations (in excess of 500 mg Cl2/L). Although slight deviations from in silico predictions were observed for steroids with electron-rich substituents (e.g., C17 allyl-substituted altrenogest), this work highlights the potential for computational approaches to improve our understanding of transformation products generated from emerging pollutant classes.</description><subject>Chlorination</subject><subject>Chlorine</subject><subject>Computer applications</subject><subject>Contaminants in Aquatic and Terrestrial Environments</subject><subject>Density functional theory</subject><subject>Disinfectants</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Pollutants</subject><subject>Predictions</subject><subject>Risk assessment</subject><subject>Steroid hormones</subject><subject>Steroids</subject><subject>Testosterone</subject><subject>Transformations</subject><subject>Trenbolone</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kc2L1EAUxBtR3HH17DXgRZDM9uuvJB6EZRg_YEHBOXhrXjodp5ekO3YnA_73dpxxQcHTO9SviuIVIS-BboEyuEGTtjbNWzBUKNk8IhuQjJaylvCYbCgFXjZcfbsiz1K6p5QyTuun5IoLxSvWiA057cI4LTPOLngcittpigHN0aaiD7GYj7b4Em3nzKoXoS_2_uRi8KP1c8YPEX3K4Pjbn9HQLWZOb4vdcQjRefxj-zrbGFyXLXsfvE3PyZMeh2RfXO41ObzfH3Yfy7vPHz7tbu9KFFzMJQLDrmtZb1rTVW1tEFAoZFZI2WEFtq8ZCMagbSXjAjhURglWV6rHvrH8mrw7x05LO9rO5NYRBz1FN2L8qQM6_bfi3VF_DyddS1UJUDng9SUghh9L_rQeXTJ2GNDbsCTNZA25gqpYRl_9g96HJeanrlTDG9owKTN1c6ZMDClF2z-UAarXSXWeVK_uy6TZ8ebsWIWHyP_RvwC5SKaA</recordid><startdate>20211102</startdate><enddate>20211102</enddate><creator>Knutson, Christopher J</creator><creator>Pflug, Nicholas C</creator><creator>Yeung, Wyanna</creator><creator>Grobstein, Matthew</creator><creator>Patterson, Eric V</creator><creator>Cwiertny, David M</creator><creator>Gloer, James B</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0310-7626</orcidid><orcidid>https://orcid.org/0000-0002-9261-7571</orcidid><orcidid>https://orcid.org/0000-0002-2023-2162</orcidid><orcidid>https://orcid.org/0000-0001-6161-731X</orcidid></search><sort><creationdate>20211102</creationdate><title>Computational Approaches for the Prediction of Environmental Transformation Products: Chlorination of Steroidal Enones</title><author>Knutson, Christopher J ; Pflug, Nicholas C ; Yeung, Wyanna ; Grobstein, Matthew ; Patterson, Eric V ; Cwiertny, David M ; Gloer, James B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a434t-a12addb2fcbcd7b8ca1a46a2e455da71ef8214221bb52341317c642876faf9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chlorination</topic><topic>Chlorine</topic><topic>Computer applications</topic><topic>Contaminants in Aquatic and Terrestrial Environments</topic><topic>Density functional theory</topic><topic>Disinfectants</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Pollutants</topic><topic>Predictions</topic><topic>Risk assessment</topic><topic>Steroid hormones</topic><topic>Steroids</topic><topic>Testosterone</topic><topic>Transformations</topic><topic>Trenbolone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knutson, Christopher J</creatorcontrib><creatorcontrib>Pflug, Nicholas C</creatorcontrib><creatorcontrib>Yeung, Wyanna</creatorcontrib><creatorcontrib>Grobstein, Matthew</creatorcontrib><creatorcontrib>Patterson, Eric V</creatorcontrib><creatorcontrib>Cwiertny, David M</creatorcontrib><creatorcontrib>Gloer, James B</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knutson, Christopher J</au><au>Pflug, Nicholas C</au><au>Yeung, Wyanna</au><au>Grobstein, Matthew</au><au>Patterson, Eric V</au><au>Cwiertny, David M</au><au>Gloer, James B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Approaches for the Prediction of Environmental Transformation Products: Chlorination of Steroidal Enones</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2021-11-02</date><risdate>2021</risdate><volume>55</volume><issue>21</issue><spage>14658</spage><epage>14666</epage><pages>14658-14666</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>There is growing interest in the fate and effects of transformation products generated from emerging pollutant classes, and new tools that help predict the products most likely to form will aid in risk assessment. Here, using a family of structurally related steroids (enones, dienones, and trienones), we evaluate the use of density functional theory to help predict products from reaction with chlorine, a common chemical disinfectant. For steroidal dienones (e.g., dienogest) and trienones (e.g., 17β-trenbolone), computational data support that reactions proceed through spontaneous C4 chlorination to yield 4-chloro derivatives for trienones and, after further reaction, 9,10-epoxide structures for dienones. For testosterone, a simple steroidal enone, in silico predictions suggest that C4 chlorination is still most likely, but slow at environmentally relevant conditions. Predictions were then assessed through laboratory chlorination reactions (0.5–5 mg Cl2/L) with product characterization via HRMS and NMR, which confirmed near exclusive 4-chloro and 9,10-epoxide products for most trienones and all dienones, respectively. Also consistent with computational expectations, testosterone was effectively unreactive at these same chlorine levels, although products consistent with in silico predictions were observed at higher concentrations (in excess of 500 mg Cl2/L). Although slight deviations from in silico predictions were observed for steroids with electron-rich substituents (e.g., C17 allyl-substituted altrenogest), this work highlights the potential for computational approaches to improve our understanding of transformation products generated from emerging pollutant classes.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><pmid>34637294</pmid><doi>10.1021/acs.est.1c04659</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0310-7626</orcidid><orcidid>https://orcid.org/0000-0002-9261-7571</orcidid><orcidid>https://orcid.org/0000-0002-2023-2162</orcidid><orcidid>https://orcid.org/0000-0001-6161-731X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2021-11, Vol.55 (21), p.14658-14666
issn 0013-936X
1520-5851
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8567416
source ACS Publications
subjects Chlorination
Chlorine
Computer applications
Contaminants in Aquatic and Terrestrial Environments
Density functional theory
Disinfectants
NMR
Nuclear magnetic resonance
Pollutants
Predictions
Risk assessment
Steroid hormones
Steroids
Testosterone
Transformations
Trenbolone
title Computational Approaches for the Prediction of Environmental Transformation Products: Chlorination of Steroidal Enones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Approaches%20for%20the%20Prediction%20of%20Environmental%20Transformation%20Products:%20Chlorination%20of%20Steroidal%20Enones&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Knutson,%20Christopher%20J&rft.date=2021-11-02&rft.volume=55&rft.issue=21&rft.spage=14658&rft.epage=14666&rft.pages=14658-14666&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.1c04659&rft_dat=%3Cproquest_pubme%3E2593909255%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593909255&rft_id=info:pmid/34637294&rfr_iscdi=true