Thermodynamics of semi-specific ligand recognition: the binding of dipeptides to the E.coli dipeptide binding protein DppA

This investigation of the temperature dependence of DppA interactions with a subset of three dipeptides (AA. AF and FA) by isothermal titration calorimetry has revealed the negative heat capacity ( Δ C p o ) that is a characteristic of hydrophobic interactions. The observation of enthalpy–entropy co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European biophysics journal 2021-12, Vol.50 (8), p.1103-1110
Hauptverfasser: Zainol, Mohamad K. M., Linforth, Robert J. C., Winzor, Donald J., Scott, David J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1110
container_issue 8
container_start_page 1103
container_title European biophysics journal
container_volume 50
creator Zainol, Mohamad K. M.
Linforth, Robert J. C.
Winzor, Donald J.
Scott, David J.
description This investigation of the temperature dependence of DppA interactions with a subset of three dipeptides (AA. AF and FA) by isothermal titration calorimetry has revealed the negative heat capacity ( Δ C p o ) that is a characteristic of hydrophobic interactions. The observation of enthalpy–entropy compensation is interpreted in terms of the increased structuring of water molecules trapped in a hydrophobic environment, the enthalpic energy gain from which is automatically countered by the entropy decrease associated with consequent loss of water structure flexibility. Specificity for dipeptides stems from appropriate spacing of designated DppA aspartate and arginine residues for electrostatic interaction with the terminal amino and carboxyl groups of a dipeptide, after which the binding pocket closes to become completely isolated from the aqueous environment. Any differences in chemical reactivity of the dipeptide sidechains are thereby modulated by their occurrence in a hydrophobic environment where changes in the structural state of entrapped water molecules give rise to the phenomenon of enthalpy–entropy compensation. The consequent minimization of differences in the value of Δ G 0 for all DppA–dipeptide interactions thus provides thermodynamic insight into the biological role of DppA as a transporter of all dipeptides across the periplasmic membrane.
doi_str_mv 10.1007/s00249-021-01572-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8566422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593109276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-58739bba2fbb52509d5cc2ad002968f469238169287ec059d3766f1d968ebf7e3</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EokPhD7BAkdiwcfEjtmMWSFUpD6kSm7K2HPsm4yqxg51BGn49bqdMgQWb68X57vE9Ogi9pOSMEqLeFkJYqzFhFBMqFMP7R2hDW84wJVQ9Rps6BVZC0RP0rJQbQlpBafcUnfBWUqoU26Cf11vIc_L7aOfgSpOGpsAccFnAhSG4Zgqjjb7J4NIYwxpSfNesW2j6EH2I4-2CDwssa_BQmjXdiZdnLk3hQTjSS04rhNh8WJbz5-jJYKcCL-7fU_Tt4-X1xWd89fXTl4vzK-xES1YsOsV131s29L1ggmgvnGPW1_BadkMrNeMdrbNT4IjQnispB-qrCP2ggJ-i9wffZdfP4B3ENdvJLDnMNu9NssH8rcSwNWP6YTohZctYNXhzb5DT9x2U1cyhOJgmGyHtimFCacmJ0l1FX_-D3qRdjjVepTSnRDMlK8UOlMuplAzD8RhKzG215lCtqdWau2rNvi69-jPGceV3lxXgB6BUKY6QH_7-j-0vX1OxKg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593109276</pqid></control><display><type>article</type><title>Thermodynamics of semi-specific ligand recognition: the binding of dipeptides to the E.coli dipeptide binding protein DppA</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Zainol, Mohamad K. M. ; Linforth, Robert J. C. ; Winzor, Donald J. ; Scott, David J.</creator><creatorcontrib>Zainol, Mohamad K. M. ; Linforth, Robert J. C. ; Winzor, Donald J. ; Scott, David J.</creatorcontrib><description>This investigation of the temperature dependence of DppA interactions with a subset of three dipeptides (AA. AF and FA) by isothermal titration calorimetry has revealed the negative heat capacity ( Δ C p o ) that is a characteristic of hydrophobic interactions. The observation of enthalpy–entropy compensation is interpreted in terms of the increased structuring of water molecules trapped in a hydrophobic environment, the enthalpic energy gain from which is automatically countered by the entropy decrease associated with consequent loss of water structure flexibility. Specificity for dipeptides stems from appropriate spacing of designated DppA aspartate and arginine residues for electrostatic interaction with the terminal amino and carboxyl groups of a dipeptide, after which the binding pocket closes to become completely isolated from the aqueous environment. Any differences in chemical reactivity of the dipeptide sidechains are thereby modulated by their occurrence in a hydrophobic environment where changes in the structural state of entrapped water molecules give rise to the phenomenon of enthalpy–entropy compensation. The consequent minimization of differences in the value of Δ G 0 for all DppA–dipeptide interactions thus provides thermodynamic insight into the biological role of DppA as a transporter of all dipeptides across the periplasmic membrane.</description><identifier>ISSN: 0175-7571</identifier><identifier>EISSN: 1432-1017</identifier><identifier>DOI: 10.1007/s00249-021-01572-y</identifier><identifier>PMID: 34611772</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aqueous environments ; Biochemistry ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biophysics ; Calorimetry ; Carrier Proteins - metabolism ; Cell Biology ; Chemical reactions ; Compensation ; Dipeptides ; E coli ; Electrostatic properties ; Enthalpy ; Entropy ; Escherichia coli - metabolism ; Escherichia coli Proteins ; Hydrophobicity ; Life Sciences ; Ligands ; Membrane Biology ; Nanotechnology ; Neurobiology ; Original ; Original Article ; Periplasmic Binding Proteins ; Protein Binding ; Temperature dependence ; Thermodynamics ; Titration ; Titration calorimetry ; Water ; Water chemistry</subject><ispartof>European biophysics journal, 2021-12, Vol.50 (8), p.1103-1110</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-58739bba2fbb52509d5cc2ad002968f469238169287ec059d3766f1d968ebf7e3</citedby><cites>FETCH-LOGICAL-c540t-58739bba2fbb52509d5cc2ad002968f469238169287ec059d3766f1d968ebf7e3</cites><orcidid>0000-0002-6726-2078</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00249-021-01572-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00249-021-01572-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34611772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zainol, Mohamad K. M.</creatorcontrib><creatorcontrib>Linforth, Robert J. C.</creatorcontrib><creatorcontrib>Winzor, Donald J.</creatorcontrib><creatorcontrib>Scott, David J.</creatorcontrib><title>Thermodynamics of semi-specific ligand recognition: the binding of dipeptides to the E.coli dipeptide binding protein DppA</title><title>European biophysics journal</title><addtitle>Eur Biophys J</addtitle><addtitle>Eur Biophys J</addtitle><description>This investigation of the temperature dependence of DppA interactions with a subset of three dipeptides (AA. AF and FA) by isothermal titration calorimetry has revealed the negative heat capacity ( Δ C p o ) that is a characteristic of hydrophobic interactions. The observation of enthalpy–entropy compensation is interpreted in terms of the increased structuring of water molecules trapped in a hydrophobic environment, the enthalpic energy gain from which is automatically countered by the entropy decrease associated with consequent loss of water structure flexibility. Specificity for dipeptides stems from appropriate spacing of designated DppA aspartate and arginine residues for electrostatic interaction with the terminal amino and carboxyl groups of a dipeptide, after which the binding pocket closes to become completely isolated from the aqueous environment. Any differences in chemical reactivity of the dipeptide sidechains are thereby modulated by their occurrence in a hydrophobic environment where changes in the structural state of entrapped water molecules give rise to the phenomenon of enthalpy–entropy compensation. The consequent minimization of differences in the value of Δ G 0 for all DppA–dipeptide interactions thus provides thermodynamic insight into the biological role of DppA as a transporter of all dipeptides across the periplasmic membrane.</description><subject>Aqueous environments</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biophysics</subject><subject>Calorimetry</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Biology</subject><subject>Chemical reactions</subject><subject>Compensation</subject><subject>Dipeptides</subject><subject>E coli</subject><subject>Electrostatic properties</subject><subject>Enthalpy</subject><subject>Entropy</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins</subject><subject>Hydrophobicity</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>Membrane Biology</subject><subject>Nanotechnology</subject><subject>Neurobiology</subject><subject>Original</subject><subject>Original Article</subject><subject>Periplasmic Binding Proteins</subject><subject>Protein Binding</subject><subject>Temperature dependence</subject><subject>Thermodynamics</subject><subject>Titration</subject><subject>Titration calorimetry</subject><subject>Water</subject><subject>Water chemistry</subject><issn>0175-7571</issn><issn>1432-1017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUtv1DAUhS0EokPhD7BAkdiwcfEjtmMWSFUpD6kSm7K2HPsm4yqxg51BGn49bqdMgQWb68X57vE9Ogi9pOSMEqLeFkJYqzFhFBMqFMP7R2hDW84wJVQ9Rps6BVZC0RP0rJQbQlpBafcUnfBWUqoU26Cf11vIc_L7aOfgSpOGpsAccFnAhSG4Zgqjjb7J4NIYwxpSfNesW2j6EH2I4-2CDwssa_BQmjXdiZdnLk3hQTjSS04rhNh8WJbz5-jJYKcCL-7fU_Tt4-X1xWd89fXTl4vzK-xES1YsOsV131s29L1ggmgvnGPW1_BadkMrNeMdrbNT4IjQnispB-qrCP2ggJ-i9wffZdfP4B3ENdvJLDnMNu9NssH8rcSwNWP6YTohZctYNXhzb5DT9x2U1cyhOJgmGyHtimFCacmJ0l1FX_-D3qRdjjVepTSnRDMlK8UOlMuplAzD8RhKzG215lCtqdWau2rNvi69-jPGceV3lxXgB6BUKY6QH_7-j-0vX1OxKg</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Zainol, Mohamad K. M.</creator><creator>Linforth, Robert J. C.</creator><creator>Winzor, Donald J.</creator><creator>Scott, David J.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6726-2078</orcidid></search><sort><creationdate>20211201</creationdate><title>Thermodynamics of semi-specific ligand recognition: the binding of dipeptides to the E.coli dipeptide binding protein DppA</title><author>Zainol, Mohamad K. M. ; Linforth, Robert J. C. ; Winzor, Donald J. ; Scott, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-58739bba2fbb52509d5cc2ad002968f469238169287ec059d3766f1d968ebf7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aqueous environments</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biophysics</topic><topic>Calorimetry</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Biology</topic><topic>Chemical reactions</topic><topic>Compensation</topic><topic>Dipeptides</topic><topic>E coli</topic><topic>Electrostatic properties</topic><topic>Enthalpy</topic><topic>Entropy</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins</topic><topic>Hydrophobicity</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>Membrane Biology</topic><topic>Nanotechnology</topic><topic>Neurobiology</topic><topic>Original</topic><topic>Original Article</topic><topic>Periplasmic Binding Proteins</topic><topic>Protein Binding</topic><topic>Temperature dependence</topic><topic>Thermodynamics</topic><topic>Titration</topic><topic>Titration calorimetry</topic><topic>Water</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zainol, Mohamad K. M.</creatorcontrib><creatorcontrib>Linforth, Robert J. C.</creatorcontrib><creatorcontrib>Winzor, Donald J.</creatorcontrib><creatorcontrib>Scott, David J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European biophysics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zainol, Mohamad K. M.</au><au>Linforth, Robert J. C.</au><au>Winzor, Donald J.</au><au>Scott, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamics of semi-specific ligand recognition: the binding of dipeptides to the E.coli dipeptide binding protein DppA</atitle><jtitle>European biophysics journal</jtitle><stitle>Eur Biophys J</stitle><addtitle>Eur Biophys J</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>50</volume><issue>8</issue><spage>1103</spage><epage>1110</epage><pages>1103-1110</pages><issn>0175-7571</issn><eissn>1432-1017</eissn><abstract>This investigation of the temperature dependence of DppA interactions with a subset of three dipeptides (AA. AF and FA) by isothermal titration calorimetry has revealed the negative heat capacity ( Δ C p o ) that is a characteristic of hydrophobic interactions. The observation of enthalpy–entropy compensation is interpreted in terms of the increased structuring of water molecules trapped in a hydrophobic environment, the enthalpic energy gain from which is automatically countered by the entropy decrease associated with consequent loss of water structure flexibility. Specificity for dipeptides stems from appropriate spacing of designated DppA aspartate and arginine residues for electrostatic interaction with the terminal amino and carboxyl groups of a dipeptide, after which the binding pocket closes to become completely isolated from the aqueous environment. Any differences in chemical reactivity of the dipeptide sidechains are thereby modulated by their occurrence in a hydrophobic environment where changes in the structural state of entrapped water molecules give rise to the phenomenon of enthalpy–entropy compensation. The consequent minimization of differences in the value of Δ G 0 for all DppA–dipeptide interactions thus provides thermodynamic insight into the biological role of DppA as a transporter of all dipeptides across the periplasmic membrane.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>34611772</pmid><doi>10.1007/s00249-021-01572-y</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6726-2078</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0175-7571
ispartof European biophysics journal, 2021-12, Vol.50 (8), p.1103-1110
issn 0175-7571
1432-1017
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8566422
source MEDLINE; SpringerNature Journals
subjects Aqueous environments
Biochemistry
Biological and Medical Physics
Biomedical and Life Sciences
Biophysics
Calorimetry
Carrier Proteins - metabolism
Cell Biology
Chemical reactions
Compensation
Dipeptides
E coli
Electrostatic properties
Enthalpy
Entropy
Escherichia coli - metabolism
Escherichia coli Proteins
Hydrophobicity
Life Sciences
Ligands
Membrane Biology
Nanotechnology
Neurobiology
Original
Original Article
Periplasmic Binding Proteins
Protein Binding
Temperature dependence
Thermodynamics
Titration
Titration calorimetry
Water
Water chemistry
title Thermodynamics of semi-specific ligand recognition: the binding of dipeptides to the E.coli dipeptide binding protein DppA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A02%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamics%20of%20semi-specific%20ligand%20recognition:%20the%20binding%20of%20dipeptides%20to%20the%20E.coli%20dipeptide%20binding%20protein%20DppA&rft.jtitle=European%20biophysics%20journal&rft.au=Zainol,%20Mohamad%20K.%20M.&rft.date=2021-12-01&rft.volume=50&rft.issue=8&rft.spage=1103&rft.epage=1110&rft.pages=1103-1110&rft.issn=0175-7571&rft.eissn=1432-1017&rft_id=info:doi/10.1007/s00249-021-01572-y&rft_dat=%3Cproquest_pubme%3E2593109276%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593109276&rft_id=info:pmid/34611772&rfr_iscdi=true