Leveraging human genetic data to investigate the cardiometabolic effects of glucose-dependent insulinotropic polypeptide signalling

Aims/hypothesis The aim of this study was to leverage human genetic data to investigate the cardiometabolic effects of glucose-dependent insulinotropic polypeptide (GIP) signalling. Methods Data were obtained from summary statistics of large-scale genome-wide association studies. We examined whether...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetologia 2021-12, Vol.64 (12), p.2773-2778
Hauptverfasser: Karhunen, Ville, Daghlas, Iyas, Zuber, Verena, Vujkovic, Marijana, Olsen, Anette K., Knudsen, Lotte Bjerre, Haynes, William G., Howson, Joanna M. M., Gill, Dipender
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2778
container_issue 12
container_start_page 2773
container_title Diabetologia
container_volume 64
creator Karhunen, Ville
Daghlas, Iyas
Zuber, Verena
Vujkovic, Marijana
Olsen, Anette K.
Knudsen, Lotte Bjerre
Haynes, William G.
Howson, Joanna M. M.
Gill, Dipender
description Aims/hypothesis The aim of this study was to leverage human genetic data to investigate the cardiometabolic effects of glucose-dependent insulinotropic polypeptide (GIP) signalling. Methods Data were obtained from summary statistics of large-scale genome-wide association studies. We examined whether genetic associations for type 2 diabetes liability in the GIP and GIPR genes co-localised with genetic associations for 11 cardiometabolic outcomes. For those outcomes that showed evidence of co-localisation (posterior probability >0.8), we performed Mendelian randomisation analyses to estimate the association of genetically proxied GIP signalling with risk of cardiometabolic outcomes, and to test whether this exceeded the estimate observed when considering type 2 diabetes liability variants from other regions of the genome. Results Evidence of co-localisation with genetic associations of type 2 diabetes liability at both the GIP and GIPR genes was observed for five outcomes. Mendelian randomisation analyses provided evidence for associations of lower genetically proxied type 2 diabetes liability at the GIP and GIPR genes with lower BMI (estimate in SD units −0.16, 95% CI −0.30, −0.02), C-reactive protein (−0.13, 95% CI −0.19, −0.08) and triacylglycerol levels (−0.17, 95% CI −0.22, −0.12), and higher HDL-cholesterol levels (0.19, 95% CI 0.14, 0.25). For all of these outcomes, the estimates were greater in magnitude than those observed when considering type 2 diabetes liability variants from other regions of the genome. Conclusions/interpretation This study provides genetic evidence to support a beneficial role of sustained GIP signalling on cardiometabolic health greater than that expected from improved glycaemic control alone. Further clinical investigation is warranted. Data availability All data used in this study are publicly available. The scripts for the analysis are available at: https://github.com/vkarhune/GeneticallyProxiedGIP . Graphical abstract
doi_str_mv 10.1007/s00125-021-05564-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8563538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2571918559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-4beb7ac46d014d50e07f7dcba0a675b4d6bbe16164e6bd7e54e6fb80f6ee5bee3</originalsourceid><addsrcrecordid>eNp9kTtvFDEUhS1ERJbAH6BAlmhohtgzfsw2SCgCgrQSDUh0lh93Zh3N2IPtWSl1_jheNoRHQXWL893je3wQekHJG0qIvMyE0JY3pKUN4VywRj5CG8q6tiGs7R-jzVFvaC--naOnOd8QQjrOxBN03jFOOBV0g-52cICkRx9GvF9nHfAIAYq32OmicYnYhwPk4kddAJc9YKuT83GGok2cKgfDALZkHAc8TquNGRoHCwQHodTlvE4-xJLiUtklTrcLLMU7wNmPQU9VHJ-hs0FPGZ7fzwv09cP7L1fXze7zx09X73aNZZKVhhkwUlsmHKHMcQJEDtJZo4kWkhvmhDFQQwkGwjgJvM7B9GQQANwAdBfo7cl3Wc0MztYDk57Ukvys062K2qu_leD3aowH1XPR8a6vBq_vDVL8vtZfUbPPFqZJB4hrVi2XdEt7zrcVffUPehPXVAMfqcpIviVdpdoTZVPMOcHwcAwl6tixOnWsasfqZ8dK1qWXf8Z4WPlVagW6E5CrFEZIv9_-j-0Pu4u3sw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2591875903</pqid></control><display><type>article</type><title>Leveraging human genetic data to investigate the cardiometabolic effects of glucose-dependent insulinotropic polypeptide signalling</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Karhunen, Ville ; Daghlas, Iyas ; Zuber, Verena ; Vujkovic, Marijana ; Olsen, Anette K. ; Knudsen, Lotte Bjerre ; Haynes, William G. ; Howson, Joanna M. M. ; Gill, Dipender</creator><creatorcontrib>Karhunen, Ville ; Daghlas, Iyas ; Zuber, Verena ; Vujkovic, Marijana ; Olsen, Anette K. ; Knudsen, Lotte Bjerre ; Haynes, William G. ; Howson, Joanna M. M. ; Gill, Dipender</creatorcontrib><description>Aims/hypothesis The aim of this study was to leverage human genetic data to investigate the cardiometabolic effects of glucose-dependent insulinotropic polypeptide (GIP) signalling. Methods Data were obtained from summary statistics of large-scale genome-wide association studies. We examined whether genetic associations for type 2 diabetes liability in the GIP and GIPR genes co-localised with genetic associations for 11 cardiometabolic outcomes. For those outcomes that showed evidence of co-localisation (posterior probability &gt;0.8), we performed Mendelian randomisation analyses to estimate the association of genetically proxied GIP signalling with risk of cardiometabolic outcomes, and to test whether this exceeded the estimate observed when considering type 2 diabetes liability variants from other regions of the genome. Results Evidence of co-localisation with genetic associations of type 2 diabetes liability at both the GIP and GIPR genes was observed for five outcomes. Mendelian randomisation analyses provided evidence for associations of lower genetically proxied type 2 diabetes liability at the GIP and GIPR genes with lower BMI (estimate in SD units −0.16, 95% CI −0.30, −0.02), C-reactive protein (−0.13, 95% CI −0.19, −0.08) and triacylglycerol levels (−0.17, 95% CI −0.22, −0.12), and higher HDL-cholesterol levels (0.19, 95% CI 0.14, 0.25). For all of these outcomes, the estimates were greater in magnitude than those observed when considering type 2 diabetes liability variants from other regions of the genome. Conclusions/interpretation This study provides genetic evidence to support a beneficial role of sustained GIP signalling on cardiometabolic health greater than that expected from improved glycaemic control alone. Further clinical investigation is warranted. Data availability All data used in this study are publicly available. The scripts for the analysis are available at: https://github.com/vkarhune/GeneticallyProxiedGIP . Graphical abstract</description><identifier>ISSN: 0012-186X</identifier><identifier>EISSN: 1432-0428</identifier><identifier>DOI: 10.1007/s00125-021-05564-7</identifier><identifier>PMID: 34505161</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>C-reactive protein ; Cardiovascular Diseases - genetics ; Cholesterol ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - genetics ; Diabetes Mellitus, Type 2 - metabolism ; Gastric Inhibitory Polypeptide - genetics ; Gastric Inhibitory Polypeptide - metabolism ; Genome-Wide Association Study ; Genomes ; GIP protein ; Glucose - metabolism ; High density lipoprotein ; Human Genetics ; Human Physiology ; Humans ; Internal Medicine ; Liability ; Localization ; Medicine ; Medicine &amp; Public Health ; Metabolic Diseases ; Polypeptides ; Receptors, Gastrointestinal Hormone - genetics ; Receptors, Gastrointestinal Hormone - metabolism ; Short Communication ; Statistical analysis</subject><ispartof>Diabetologia, 2021-12, Vol.64 (12), p.2773-2778</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-4beb7ac46d014d50e07f7dcba0a675b4d6bbe16164e6bd7e54e6fb80f6ee5bee3</citedby><cites>FETCH-LOGICAL-c474t-4beb7ac46d014d50e07f7dcba0a675b4d6bbe16164e6bd7e54e6fb80f6ee5bee3</cites><orcidid>0000-0001-9827-1877 ; 0000-0001-8735-284X ; 0000-0003-1004-6136 ; 0000-0001-7312-7078 ; 0000-0001-9352-621X ; 0000-0003-4924-5714 ; 0000-0001-6064-1588 ; 0000-0002-2439-7116 ; 0000-0001-7618-0050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00125-021-05564-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00125-021-05564-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34505161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karhunen, Ville</creatorcontrib><creatorcontrib>Daghlas, Iyas</creatorcontrib><creatorcontrib>Zuber, Verena</creatorcontrib><creatorcontrib>Vujkovic, Marijana</creatorcontrib><creatorcontrib>Olsen, Anette K.</creatorcontrib><creatorcontrib>Knudsen, Lotte Bjerre</creatorcontrib><creatorcontrib>Haynes, William G.</creatorcontrib><creatorcontrib>Howson, Joanna M. M.</creatorcontrib><creatorcontrib>Gill, Dipender</creatorcontrib><title>Leveraging human genetic data to investigate the cardiometabolic effects of glucose-dependent insulinotropic polypeptide signalling</title><title>Diabetologia</title><addtitle>Diabetologia</addtitle><addtitle>Diabetologia</addtitle><description>Aims/hypothesis The aim of this study was to leverage human genetic data to investigate the cardiometabolic effects of glucose-dependent insulinotropic polypeptide (GIP) signalling. Methods Data were obtained from summary statistics of large-scale genome-wide association studies. We examined whether genetic associations for type 2 diabetes liability in the GIP and GIPR genes co-localised with genetic associations for 11 cardiometabolic outcomes. For those outcomes that showed evidence of co-localisation (posterior probability &gt;0.8), we performed Mendelian randomisation analyses to estimate the association of genetically proxied GIP signalling with risk of cardiometabolic outcomes, and to test whether this exceeded the estimate observed when considering type 2 diabetes liability variants from other regions of the genome. Results Evidence of co-localisation with genetic associations of type 2 diabetes liability at both the GIP and GIPR genes was observed for five outcomes. Mendelian randomisation analyses provided evidence for associations of lower genetically proxied type 2 diabetes liability at the GIP and GIPR genes with lower BMI (estimate in SD units −0.16, 95% CI −0.30, −0.02), C-reactive protein (−0.13, 95% CI −0.19, −0.08) and triacylglycerol levels (−0.17, 95% CI −0.22, −0.12), and higher HDL-cholesterol levels (0.19, 95% CI 0.14, 0.25). For all of these outcomes, the estimates were greater in magnitude than those observed when considering type 2 diabetes liability variants from other regions of the genome. Conclusions/interpretation This study provides genetic evidence to support a beneficial role of sustained GIP signalling on cardiometabolic health greater than that expected from improved glycaemic control alone. Further clinical investigation is warranted. Data availability All data used in this study are publicly available. The scripts for the analysis are available at: https://github.com/vkarhune/GeneticallyProxiedGIP . Graphical abstract</description><subject>C-reactive protein</subject><subject>Cardiovascular Diseases - genetics</subject><subject>Cholesterol</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - genetics</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Gastric Inhibitory Polypeptide - genetics</subject><subject>Gastric Inhibitory Polypeptide - metabolism</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>GIP protein</subject><subject>Glucose - metabolism</subject><subject>High density lipoprotein</subject><subject>Human Genetics</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Liability</subject><subject>Localization</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metabolic Diseases</subject><subject>Polypeptides</subject><subject>Receptors, Gastrointestinal Hormone - genetics</subject><subject>Receptors, Gastrointestinal Hormone - metabolism</subject><subject>Short Communication</subject><subject>Statistical analysis</subject><issn>0012-186X</issn><issn>1432-0428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kTtvFDEUhS1ERJbAH6BAlmhohtgzfsw2SCgCgrQSDUh0lh93Zh3N2IPtWSl1_jheNoRHQXWL893je3wQekHJG0qIvMyE0JY3pKUN4VywRj5CG8q6tiGs7R-jzVFvaC--naOnOd8QQjrOxBN03jFOOBV0g-52cICkRx9GvF9nHfAIAYq32OmicYnYhwPk4kddAJc9YKuT83GGok2cKgfDALZkHAc8TquNGRoHCwQHodTlvE4-xJLiUtklTrcLLMU7wNmPQU9VHJ-hs0FPGZ7fzwv09cP7L1fXze7zx09X73aNZZKVhhkwUlsmHKHMcQJEDtJZo4kWkhvmhDFQQwkGwjgJvM7B9GQQANwAdBfo7cl3Wc0MztYDk57Ukvys062K2qu_leD3aowH1XPR8a6vBq_vDVL8vtZfUbPPFqZJB4hrVi2XdEt7zrcVffUPehPXVAMfqcpIviVdpdoTZVPMOcHwcAwl6tixOnWsasfqZ8dK1qWXf8Z4WPlVagW6E5CrFEZIv9_-j-0Pu4u3sw</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Karhunen, Ville</creator><creator>Daghlas, Iyas</creator><creator>Zuber, Verena</creator><creator>Vujkovic, Marijana</creator><creator>Olsen, Anette K.</creator><creator>Knudsen, Lotte Bjerre</creator><creator>Haynes, William G.</creator><creator>Howson, Joanna M. M.</creator><creator>Gill, Dipender</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9827-1877</orcidid><orcidid>https://orcid.org/0000-0001-8735-284X</orcidid><orcidid>https://orcid.org/0000-0003-1004-6136</orcidid><orcidid>https://orcid.org/0000-0001-7312-7078</orcidid><orcidid>https://orcid.org/0000-0001-9352-621X</orcidid><orcidid>https://orcid.org/0000-0003-4924-5714</orcidid><orcidid>https://orcid.org/0000-0001-6064-1588</orcidid><orcidid>https://orcid.org/0000-0002-2439-7116</orcidid><orcidid>https://orcid.org/0000-0001-7618-0050</orcidid></search><sort><creationdate>20211201</creationdate><title>Leveraging human genetic data to investigate the cardiometabolic effects of glucose-dependent insulinotropic polypeptide signalling</title><author>Karhunen, Ville ; Daghlas, Iyas ; Zuber, Verena ; Vujkovic, Marijana ; Olsen, Anette K. ; Knudsen, Lotte Bjerre ; Haynes, William G. ; Howson, Joanna M. M. ; Gill, Dipender</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-4beb7ac46d014d50e07f7dcba0a675b4d6bbe16164e6bd7e54e6fb80f6ee5bee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C-reactive protein</topic><topic>Cardiovascular Diseases - genetics</topic><topic>Cholesterol</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - genetics</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Gastric Inhibitory Polypeptide - genetics</topic><topic>Gastric Inhibitory Polypeptide - metabolism</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>GIP protein</topic><topic>Glucose - metabolism</topic><topic>High density lipoprotein</topic><topic>Human Genetics</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Liability</topic><topic>Localization</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metabolic Diseases</topic><topic>Polypeptides</topic><topic>Receptors, Gastrointestinal Hormone - genetics</topic><topic>Receptors, Gastrointestinal Hormone - metabolism</topic><topic>Short Communication</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karhunen, Ville</creatorcontrib><creatorcontrib>Daghlas, Iyas</creatorcontrib><creatorcontrib>Zuber, Verena</creatorcontrib><creatorcontrib>Vujkovic, Marijana</creatorcontrib><creatorcontrib>Olsen, Anette K.</creatorcontrib><creatorcontrib>Knudsen, Lotte Bjerre</creatorcontrib><creatorcontrib>Haynes, William G.</creatorcontrib><creatorcontrib>Howson, Joanna M. M.</creatorcontrib><creatorcontrib>Gill, Dipender</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karhunen, Ville</au><au>Daghlas, Iyas</au><au>Zuber, Verena</au><au>Vujkovic, Marijana</au><au>Olsen, Anette K.</au><au>Knudsen, Lotte Bjerre</au><au>Haynes, William G.</au><au>Howson, Joanna M. M.</au><au>Gill, Dipender</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging human genetic data to investigate the cardiometabolic effects of glucose-dependent insulinotropic polypeptide signalling</atitle><jtitle>Diabetologia</jtitle><stitle>Diabetologia</stitle><addtitle>Diabetologia</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>64</volume><issue>12</issue><spage>2773</spage><epage>2778</epage><pages>2773-2778</pages><issn>0012-186X</issn><eissn>1432-0428</eissn><abstract>Aims/hypothesis The aim of this study was to leverage human genetic data to investigate the cardiometabolic effects of glucose-dependent insulinotropic polypeptide (GIP) signalling. Methods Data were obtained from summary statistics of large-scale genome-wide association studies. We examined whether genetic associations for type 2 diabetes liability in the GIP and GIPR genes co-localised with genetic associations for 11 cardiometabolic outcomes. For those outcomes that showed evidence of co-localisation (posterior probability &gt;0.8), we performed Mendelian randomisation analyses to estimate the association of genetically proxied GIP signalling with risk of cardiometabolic outcomes, and to test whether this exceeded the estimate observed when considering type 2 diabetes liability variants from other regions of the genome. Results Evidence of co-localisation with genetic associations of type 2 diabetes liability at both the GIP and GIPR genes was observed for five outcomes. Mendelian randomisation analyses provided evidence for associations of lower genetically proxied type 2 diabetes liability at the GIP and GIPR genes with lower BMI (estimate in SD units −0.16, 95% CI −0.30, −0.02), C-reactive protein (−0.13, 95% CI −0.19, −0.08) and triacylglycerol levels (−0.17, 95% CI −0.22, −0.12), and higher HDL-cholesterol levels (0.19, 95% CI 0.14, 0.25). For all of these outcomes, the estimates were greater in magnitude than those observed when considering type 2 diabetes liability variants from other regions of the genome. Conclusions/interpretation This study provides genetic evidence to support a beneficial role of sustained GIP signalling on cardiometabolic health greater than that expected from improved glycaemic control alone. Further clinical investigation is warranted. Data availability All data used in this study are publicly available. The scripts for the analysis are available at: https://github.com/vkarhune/GeneticallyProxiedGIP . Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34505161</pmid><doi>10.1007/s00125-021-05564-7</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9827-1877</orcidid><orcidid>https://orcid.org/0000-0001-8735-284X</orcidid><orcidid>https://orcid.org/0000-0003-1004-6136</orcidid><orcidid>https://orcid.org/0000-0001-7312-7078</orcidid><orcidid>https://orcid.org/0000-0001-9352-621X</orcidid><orcidid>https://orcid.org/0000-0003-4924-5714</orcidid><orcidid>https://orcid.org/0000-0001-6064-1588</orcidid><orcidid>https://orcid.org/0000-0002-2439-7116</orcidid><orcidid>https://orcid.org/0000-0001-7618-0050</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-186X
ispartof Diabetologia, 2021-12, Vol.64 (12), p.2773-2778
issn 0012-186X
1432-0428
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8563538
source MEDLINE; Springer Nature - Complete Springer Journals
subjects C-reactive protein
Cardiovascular Diseases - genetics
Cholesterol
Diabetes
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - genetics
Diabetes Mellitus, Type 2 - metabolism
Gastric Inhibitory Polypeptide - genetics
Gastric Inhibitory Polypeptide - metabolism
Genome-Wide Association Study
Genomes
GIP protein
Glucose - metabolism
High density lipoprotein
Human Genetics
Human Physiology
Humans
Internal Medicine
Liability
Localization
Medicine
Medicine & Public Health
Metabolic Diseases
Polypeptides
Receptors, Gastrointestinal Hormone - genetics
Receptors, Gastrointestinal Hormone - metabolism
Short Communication
Statistical analysis
title Leveraging human genetic data to investigate the cardiometabolic effects of glucose-dependent insulinotropic polypeptide signalling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A49%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20human%20genetic%20data%20to%20investigate%20the%20cardiometabolic%20effects%20of%20glucose-dependent%20insulinotropic%20polypeptide%20signalling&rft.jtitle=Diabetologia&rft.au=Karhunen,%20Ville&rft.date=2021-12-01&rft.volume=64&rft.issue=12&rft.spage=2773&rft.epage=2778&rft.pages=2773-2778&rft.issn=0012-186X&rft.eissn=1432-0428&rft_id=info:doi/10.1007/s00125-021-05564-7&rft_dat=%3Cproquest_pubme%3E2571918559%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2591875903&rft_id=info:pmid/34505161&rfr_iscdi=true