Cohesin mediates DNA loop extrusion by a “swing and clamp” mechanism

Structural maintenance of chromosomes (SMC) complexes organize genome topology in all kingdoms of life and have been proposed to perform this function by DNA loop extrusion. How this process works is unknown. Here, we have analyzed how loop extrusion is mediated by human cohesin-NIPBL complexes, whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2021-10, Vol.184 (21), p.5448-5464.e22
Hauptverfasser: Bauer, Benedikt W., Davidson, Iain F., Canena, Daniel, Wutz, Gordana, Tang, Wen, Litos, Gabriele, Horn, Sabrina, Hinterdorfer, Peter, Peters, Jan-Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5464.e22
container_issue 21
container_start_page 5448
container_title Cell
container_volume 184
creator Bauer, Benedikt W.
Davidson, Iain F.
Canena, Daniel
Wutz, Gordana
Tang, Wen
Litos, Gabriele
Horn, Sabrina
Hinterdorfer, Peter
Peters, Jan-Michael
description Structural maintenance of chromosomes (SMC) complexes organize genome topology in all kingdoms of life and have been proposed to perform this function by DNA loop extrusion. How this process works is unknown. Here, we have analyzed how loop extrusion is mediated by human cohesin-NIPBL complexes, which enable chromatin folding in interphase cells. We have identified DNA binding sites and large-scale conformational changes that are required for loop extrusion and have determined how these are coordinated. Our results suggest that DNA is translocated by a spontaneous 50 nm-swing of cohesin’s hinge, which hands DNA over to the ATPase head of SMC3, where upon binding of ATP, DNA is clamped by NIPBL. During this process, NIPBL “jumps ship” from the hinge toward the SMC3 head and might thereby couple the spontaneous hinge swing to ATP-dependent DNA clamping. These results reveal mechanistic principles of how cohesin-NIPBL and possibly other SMC complexes mediate loop extrusion. [Display omitted] •Identification of cohesin’s DNA binding sites and movements needed for loop extrusion•A DNA binding site on the hinge might translocate DNA by ATP-independent swinging•DNA clamping on the ATPase heads is regulated by ATP-dependent engagement cycles•NIPBL couples ATP-independent and -dependent DNA translocation events Cohesin hands DNA over long distances from one binding site to another, explaining how SMC complexes might fold genomes in all kingdoms of life.
doi_str_mv 10.1016/j.cell.2021.09.016
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8563363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867421010631</els_id><sourcerecordid>2580700322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-4972b435a7f6713895217be233ad04856a5bb435588d354ca39a21396e6ca0633</originalsourceid><addsrcrecordid>eNp9kctOHDEQRS0UBMPjB1hEXmbTnfKrH1IUCQ0hICHYwNpyuz2MR932YPfw2PEh4ef4EtwMILJhZanq3uPSvQgdEMgJkOLnItem63IKlORQ52m0gSYE6jLjpKTf0ASgpllVlHwb7cS4AIBKCLGFthkvKKeUTNDJ1M9NtA73prVqMBEfnR_izvslNvdDWEXrHW4esMLPj__inXXXWLkW6071y-fHp2TTc-Vs7PfQ5kx10ey_vbvo6vjP5fQkO7v4ezo9PMs0F2LIeF3ShjOhyllRElbVgpKyMZQx1QKvRKFEM-5FVbVMcK1YrShhdWEKraBgbBf9XnOXqybdrI0bgurkMthehQfplZX_b5ydy2t_KxObsVfAjzdA8DcrEwfZ2zgGqZzxqyipqKAEYJQmKV1LdfAxBjP7-IaAHCuQCzk65ViBhFqmUTJ9_3zgh-U98yT4tRaYFNOtNUFGbY3TqYBg9CBbb7_ivwDR15ip</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580700322</pqid></control><display><type>article</type><title>Cohesin mediates DNA loop extrusion by a “swing and clamp” mechanism</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bauer, Benedikt W. ; Davidson, Iain F. ; Canena, Daniel ; Wutz, Gordana ; Tang, Wen ; Litos, Gabriele ; Horn, Sabrina ; Hinterdorfer, Peter ; Peters, Jan-Michael</creator><creatorcontrib>Bauer, Benedikt W. ; Davidson, Iain F. ; Canena, Daniel ; Wutz, Gordana ; Tang, Wen ; Litos, Gabriele ; Horn, Sabrina ; Hinterdorfer, Peter ; Peters, Jan-Michael</creatorcontrib><description>Structural maintenance of chromosomes (SMC) complexes organize genome topology in all kingdoms of life and have been proposed to perform this function by DNA loop extrusion. How this process works is unknown. Here, we have analyzed how loop extrusion is mediated by human cohesin-NIPBL complexes, which enable chromatin folding in interphase cells. We have identified DNA binding sites and large-scale conformational changes that are required for loop extrusion and have determined how these are coordinated. Our results suggest that DNA is translocated by a spontaneous 50 nm-swing of cohesin’s hinge, which hands DNA over to the ATPase head of SMC3, where upon binding of ATP, DNA is clamped by NIPBL. During this process, NIPBL “jumps ship” from the hinge toward the SMC3 head and might thereby couple the spontaneous hinge swing to ATP-dependent DNA clamping. These results reveal mechanistic principles of how cohesin-NIPBL and possibly other SMC complexes mediate loop extrusion. [Display omitted] •Identification of cohesin’s DNA binding sites and movements needed for loop extrusion•A DNA binding site on the hinge might translocate DNA by ATP-independent swinging•DNA clamping on the ATPase heads is regulated by ATP-dependent engagement cycles•NIPBL couples ATP-independent and -dependent DNA translocation events Cohesin hands DNA over long distances from one binding site to another, explaining how SMC complexes might fold genomes in all kingdoms of life.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2021.09.016</identifier><identifier>PMID: 34624221</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Triphosphatases - metabolism ; Adenosine Triphosphate - metabolism ; Binding Sites ; Cell Cycle Proteins - chemistry ; Cell Cycle Proteins - metabolism ; Chromosomal Proteins, Non-Histone - metabolism ; cohesin ; Cohesins ; DNA - chemistry ; DNA - metabolism ; Fluorescence Resonance Energy Transfer ; genome architecture ; HeLa Cells ; high speed AFM ; Humans ; Hydrolysis ; Kinetics ; loop extrusion ; Microscopy, Atomic Force ; Models, Molecular ; NIPBL ; Nuclear Proteins - metabolism ; Nucleic Acid Conformation ; Protein Conformation ; single molecule FRET ; SMC complexes</subject><ispartof>Cell, 2021-10, Vol.184 (21), p.5448-5464.e22</ispartof><rights>2021 The Author(s)</rights><rights>Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2021 The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-4972b435a7f6713895217be233ad04856a5bb435588d354ca39a21396e6ca0633</citedby><cites>FETCH-LOGICAL-c455t-4972b435a7f6713895217be233ad04856a5bb435588d354ca39a21396e6ca0633</cites><orcidid>0000-0003-4945-6415 ; 0000-0002-6842-0795 ; 0000-0002-2113-4986 ; 0000-0003-2583-1305 ; 0000-0001-5112-5039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867421010631$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34624221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bauer, Benedikt W.</creatorcontrib><creatorcontrib>Davidson, Iain F.</creatorcontrib><creatorcontrib>Canena, Daniel</creatorcontrib><creatorcontrib>Wutz, Gordana</creatorcontrib><creatorcontrib>Tang, Wen</creatorcontrib><creatorcontrib>Litos, Gabriele</creatorcontrib><creatorcontrib>Horn, Sabrina</creatorcontrib><creatorcontrib>Hinterdorfer, Peter</creatorcontrib><creatorcontrib>Peters, Jan-Michael</creatorcontrib><title>Cohesin mediates DNA loop extrusion by a “swing and clamp” mechanism</title><title>Cell</title><addtitle>Cell</addtitle><description>Structural maintenance of chromosomes (SMC) complexes organize genome topology in all kingdoms of life and have been proposed to perform this function by DNA loop extrusion. How this process works is unknown. Here, we have analyzed how loop extrusion is mediated by human cohesin-NIPBL complexes, which enable chromatin folding in interphase cells. We have identified DNA binding sites and large-scale conformational changes that are required for loop extrusion and have determined how these are coordinated. Our results suggest that DNA is translocated by a spontaneous 50 nm-swing of cohesin’s hinge, which hands DNA over to the ATPase head of SMC3, where upon binding of ATP, DNA is clamped by NIPBL. During this process, NIPBL “jumps ship” from the hinge toward the SMC3 head and might thereby couple the spontaneous hinge swing to ATP-dependent DNA clamping. These results reveal mechanistic principles of how cohesin-NIPBL and possibly other SMC complexes mediate loop extrusion. [Display omitted] •Identification of cohesin’s DNA binding sites and movements needed for loop extrusion•A DNA binding site on the hinge might translocate DNA by ATP-independent swinging•DNA clamping on the ATPase heads is regulated by ATP-dependent engagement cycles•NIPBL couples ATP-independent and -dependent DNA translocation events Cohesin hands DNA over long distances from one binding site to another, explaining how SMC complexes might fold genomes in all kingdoms of life.</description><subject>Adenosine Triphosphatases - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Binding Sites</subject><subject>Cell Cycle Proteins - chemistry</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>cohesin</subject><subject>Cohesins</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>genome architecture</subject><subject>HeLa Cells</subject><subject>high speed AFM</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>Kinetics</subject><subject>loop extrusion</subject><subject>Microscopy, Atomic Force</subject><subject>Models, Molecular</subject><subject>NIPBL</subject><subject>Nuclear Proteins - metabolism</subject><subject>Nucleic Acid Conformation</subject><subject>Protein Conformation</subject><subject>single molecule FRET</subject><subject>SMC complexes</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctOHDEQRS0UBMPjB1hEXmbTnfKrH1IUCQ0hICHYwNpyuz2MR932YPfw2PEh4ef4EtwMILJhZanq3uPSvQgdEMgJkOLnItem63IKlORQ52m0gSYE6jLjpKTf0ASgpllVlHwb7cS4AIBKCLGFthkvKKeUTNDJ1M9NtA73prVqMBEfnR_izvslNvdDWEXrHW4esMLPj__inXXXWLkW6071y-fHp2TTc-Vs7PfQ5kx10ey_vbvo6vjP5fQkO7v4ezo9PMs0F2LIeF3ShjOhyllRElbVgpKyMZQx1QKvRKFEM-5FVbVMcK1YrShhdWEKraBgbBf9XnOXqybdrI0bgurkMthehQfplZX_b5ydy2t_KxObsVfAjzdA8DcrEwfZ2zgGqZzxqyipqKAEYJQmKV1LdfAxBjP7-IaAHCuQCzk65ViBhFqmUTJ9_3zgh-U98yT4tRaYFNOtNUFGbY3TqYBg9CBbb7_ivwDR15ip</recordid><startdate>20211014</startdate><enddate>20211014</enddate><creator>Bauer, Benedikt W.</creator><creator>Davidson, Iain F.</creator><creator>Canena, Daniel</creator><creator>Wutz, Gordana</creator><creator>Tang, Wen</creator><creator>Litos, Gabriele</creator><creator>Horn, Sabrina</creator><creator>Hinterdorfer, Peter</creator><creator>Peters, Jan-Michael</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4945-6415</orcidid><orcidid>https://orcid.org/0000-0002-6842-0795</orcidid><orcidid>https://orcid.org/0000-0002-2113-4986</orcidid><orcidid>https://orcid.org/0000-0003-2583-1305</orcidid><orcidid>https://orcid.org/0000-0001-5112-5039</orcidid></search><sort><creationdate>20211014</creationdate><title>Cohesin mediates DNA loop extrusion by a “swing and clamp” mechanism</title><author>Bauer, Benedikt W. ; Davidson, Iain F. ; Canena, Daniel ; Wutz, Gordana ; Tang, Wen ; Litos, Gabriele ; Horn, Sabrina ; Hinterdorfer, Peter ; Peters, Jan-Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-4972b435a7f6713895217be233ad04856a5bb435588d354ca39a21396e6ca0633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenosine Triphosphatases - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Binding Sites</topic><topic>Cell Cycle Proteins - chemistry</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>cohesin</topic><topic>Cohesins</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>genome architecture</topic><topic>HeLa Cells</topic><topic>high speed AFM</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>Kinetics</topic><topic>loop extrusion</topic><topic>Microscopy, Atomic Force</topic><topic>Models, Molecular</topic><topic>NIPBL</topic><topic>Nuclear Proteins - metabolism</topic><topic>Nucleic Acid Conformation</topic><topic>Protein Conformation</topic><topic>single molecule FRET</topic><topic>SMC complexes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bauer, Benedikt W.</creatorcontrib><creatorcontrib>Davidson, Iain F.</creatorcontrib><creatorcontrib>Canena, Daniel</creatorcontrib><creatorcontrib>Wutz, Gordana</creatorcontrib><creatorcontrib>Tang, Wen</creatorcontrib><creatorcontrib>Litos, Gabriele</creatorcontrib><creatorcontrib>Horn, Sabrina</creatorcontrib><creatorcontrib>Hinterdorfer, Peter</creatorcontrib><creatorcontrib>Peters, Jan-Michael</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bauer, Benedikt W.</au><au>Davidson, Iain F.</au><au>Canena, Daniel</au><au>Wutz, Gordana</au><au>Tang, Wen</au><au>Litos, Gabriele</au><au>Horn, Sabrina</au><au>Hinterdorfer, Peter</au><au>Peters, Jan-Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cohesin mediates DNA loop extrusion by a “swing and clamp” mechanism</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2021-10-14</date><risdate>2021</risdate><volume>184</volume><issue>21</issue><spage>5448</spage><epage>5464.e22</epage><pages>5448-5464.e22</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Structural maintenance of chromosomes (SMC) complexes organize genome topology in all kingdoms of life and have been proposed to perform this function by DNA loop extrusion. How this process works is unknown. Here, we have analyzed how loop extrusion is mediated by human cohesin-NIPBL complexes, which enable chromatin folding in interphase cells. We have identified DNA binding sites and large-scale conformational changes that are required for loop extrusion and have determined how these are coordinated. Our results suggest that DNA is translocated by a spontaneous 50 nm-swing of cohesin’s hinge, which hands DNA over to the ATPase head of SMC3, where upon binding of ATP, DNA is clamped by NIPBL. During this process, NIPBL “jumps ship” from the hinge toward the SMC3 head and might thereby couple the spontaneous hinge swing to ATP-dependent DNA clamping. These results reveal mechanistic principles of how cohesin-NIPBL and possibly other SMC complexes mediate loop extrusion. [Display omitted] •Identification of cohesin’s DNA binding sites and movements needed for loop extrusion•A DNA binding site on the hinge might translocate DNA by ATP-independent swinging•DNA clamping on the ATPase heads is regulated by ATP-dependent engagement cycles•NIPBL couples ATP-independent and -dependent DNA translocation events Cohesin hands DNA over long distances from one binding site to another, explaining how SMC complexes might fold genomes in all kingdoms of life.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34624221</pmid><doi>10.1016/j.cell.2021.09.016</doi><orcidid>https://orcid.org/0000-0003-4945-6415</orcidid><orcidid>https://orcid.org/0000-0002-6842-0795</orcidid><orcidid>https://orcid.org/0000-0002-2113-4986</orcidid><orcidid>https://orcid.org/0000-0003-2583-1305</orcidid><orcidid>https://orcid.org/0000-0001-5112-5039</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2021-10, Vol.184 (21), p.5448-5464.e22
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8563363
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adenosine Triphosphatases - metabolism
Adenosine Triphosphate - metabolism
Binding Sites
Cell Cycle Proteins - chemistry
Cell Cycle Proteins - metabolism
Chromosomal Proteins, Non-Histone - metabolism
cohesin
Cohesins
DNA - chemistry
DNA - metabolism
Fluorescence Resonance Energy Transfer
genome architecture
HeLa Cells
high speed AFM
Humans
Hydrolysis
Kinetics
loop extrusion
Microscopy, Atomic Force
Models, Molecular
NIPBL
Nuclear Proteins - metabolism
Nucleic Acid Conformation
Protein Conformation
single molecule FRET
SMC complexes
title Cohesin mediates DNA loop extrusion by a “swing and clamp” mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A43%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cohesin%20mediates%20DNA%20loop%20extrusion%20by%20a%20%E2%80%9Cswing%20and%20clamp%E2%80%9D%20mechanism&rft.jtitle=Cell&rft.au=Bauer,%20Benedikt%20W.&rft.date=2021-10-14&rft.volume=184&rft.issue=21&rft.spage=5448&rft.epage=5464.e22&rft.pages=5448-5464.e22&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2021.09.016&rft_dat=%3Cproquest_pubme%3E2580700322%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580700322&rft_id=info:pmid/34624221&rft_els_id=S0092867421010631&rfr_iscdi=true