Cohesin mediates DNA loop extrusion by a “swing and clamp” mechanism
Structural maintenance of chromosomes (SMC) complexes organize genome topology in all kingdoms of life and have been proposed to perform this function by DNA loop extrusion. How this process works is unknown. Here, we have analyzed how loop extrusion is mediated by human cohesin-NIPBL complexes, whi...
Gespeichert in:
Veröffentlicht in: | Cell 2021-10, Vol.184 (21), p.5448-5464.e22 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5464.e22 |
---|---|
container_issue | 21 |
container_start_page | 5448 |
container_title | Cell |
container_volume | 184 |
creator | Bauer, Benedikt W. Davidson, Iain F. Canena, Daniel Wutz, Gordana Tang, Wen Litos, Gabriele Horn, Sabrina Hinterdorfer, Peter Peters, Jan-Michael |
description | Structural maintenance of chromosomes (SMC) complexes organize genome topology in all kingdoms of life and have been proposed to perform this function by DNA loop extrusion. How this process works is unknown. Here, we have analyzed how loop extrusion is mediated by human cohesin-NIPBL complexes, which enable chromatin folding in interphase cells. We have identified DNA binding sites and large-scale conformational changes that are required for loop extrusion and have determined how these are coordinated. Our results suggest that DNA is translocated by a spontaneous 50 nm-swing of cohesin’s hinge, which hands DNA over to the ATPase head of SMC3, where upon binding of ATP, DNA is clamped by NIPBL. During this process, NIPBL “jumps ship” from the hinge toward the SMC3 head and might thereby couple the spontaneous hinge swing to ATP-dependent DNA clamping. These results reveal mechanistic principles of how cohesin-NIPBL and possibly other SMC complexes mediate loop extrusion.
[Display omitted]
•Identification of cohesin’s DNA binding sites and movements needed for loop extrusion•A DNA binding site on the hinge might translocate DNA by ATP-independent swinging•DNA clamping on the ATPase heads is regulated by ATP-dependent engagement cycles•NIPBL couples ATP-independent and -dependent DNA translocation events
Cohesin hands DNA over long distances from one binding site to another, explaining how SMC complexes might fold genomes in all kingdoms of life. |
doi_str_mv | 10.1016/j.cell.2021.09.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8563363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867421010631</els_id><sourcerecordid>2580700322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-4972b435a7f6713895217be233ad04856a5bb435588d354ca39a21396e6ca0633</originalsourceid><addsrcrecordid>eNp9kctOHDEQRS0UBMPjB1hEXmbTnfKrH1IUCQ0hICHYwNpyuz2MR932YPfw2PEh4ef4EtwMILJhZanq3uPSvQgdEMgJkOLnItem63IKlORQ52m0gSYE6jLjpKTf0ASgpllVlHwb7cS4AIBKCLGFthkvKKeUTNDJ1M9NtA73prVqMBEfnR_izvslNvdDWEXrHW4esMLPj__inXXXWLkW6071y-fHp2TTc-Vs7PfQ5kx10ey_vbvo6vjP5fQkO7v4ezo9PMs0F2LIeF3ShjOhyllRElbVgpKyMZQx1QKvRKFEM-5FVbVMcK1YrShhdWEKraBgbBf9XnOXqybdrI0bgurkMthehQfplZX_b5ydy2t_KxObsVfAjzdA8DcrEwfZ2zgGqZzxqyipqKAEYJQmKV1LdfAxBjP7-IaAHCuQCzk65ViBhFqmUTJ9_3zgh-U98yT4tRaYFNOtNUFGbY3TqYBg9CBbb7_ivwDR15ip</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580700322</pqid></control><display><type>article</type><title>Cohesin mediates DNA loop extrusion by a “swing and clamp” mechanism</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bauer, Benedikt W. ; Davidson, Iain F. ; Canena, Daniel ; Wutz, Gordana ; Tang, Wen ; Litos, Gabriele ; Horn, Sabrina ; Hinterdorfer, Peter ; Peters, Jan-Michael</creator><creatorcontrib>Bauer, Benedikt W. ; Davidson, Iain F. ; Canena, Daniel ; Wutz, Gordana ; Tang, Wen ; Litos, Gabriele ; Horn, Sabrina ; Hinterdorfer, Peter ; Peters, Jan-Michael</creatorcontrib><description>Structural maintenance of chromosomes (SMC) complexes organize genome topology in all kingdoms of life and have been proposed to perform this function by DNA loop extrusion. How this process works is unknown. Here, we have analyzed how loop extrusion is mediated by human cohesin-NIPBL complexes, which enable chromatin folding in interphase cells. We have identified DNA binding sites and large-scale conformational changes that are required for loop extrusion and have determined how these are coordinated. Our results suggest that DNA is translocated by a spontaneous 50 nm-swing of cohesin’s hinge, which hands DNA over to the ATPase head of SMC3, where upon binding of ATP, DNA is clamped by NIPBL. During this process, NIPBL “jumps ship” from the hinge toward the SMC3 head and might thereby couple the spontaneous hinge swing to ATP-dependent DNA clamping. These results reveal mechanistic principles of how cohesin-NIPBL and possibly other SMC complexes mediate loop extrusion.
[Display omitted]
•Identification of cohesin’s DNA binding sites and movements needed for loop extrusion•A DNA binding site on the hinge might translocate DNA by ATP-independent swinging•DNA clamping on the ATPase heads is regulated by ATP-dependent engagement cycles•NIPBL couples ATP-independent and -dependent DNA translocation events
Cohesin hands DNA over long distances from one binding site to another, explaining how SMC complexes might fold genomes in all kingdoms of life.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2021.09.016</identifier><identifier>PMID: 34624221</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Triphosphatases - metabolism ; Adenosine Triphosphate - metabolism ; Binding Sites ; Cell Cycle Proteins - chemistry ; Cell Cycle Proteins - metabolism ; Chromosomal Proteins, Non-Histone - metabolism ; cohesin ; Cohesins ; DNA - chemistry ; DNA - metabolism ; Fluorescence Resonance Energy Transfer ; genome architecture ; HeLa Cells ; high speed AFM ; Humans ; Hydrolysis ; Kinetics ; loop extrusion ; Microscopy, Atomic Force ; Models, Molecular ; NIPBL ; Nuclear Proteins - metabolism ; Nucleic Acid Conformation ; Protein Conformation ; single molecule FRET ; SMC complexes</subject><ispartof>Cell, 2021-10, Vol.184 (21), p.5448-5464.e22</ispartof><rights>2021 The Author(s)</rights><rights>Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2021 The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-4972b435a7f6713895217be233ad04856a5bb435588d354ca39a21396e6ca0633</citedby><cites>FETCH-LOGICAL-c455t-4972b435a7f6713895217be233ad04856a5bb435588d354ca39a21396e6ca0633</cites><orcidid>0000-0003-4945-6415 ; 0000-0002-6842-0795 ; 0000-0002-2113-4986 ; 0000-0003-2583-1305 ; 0000-0001-5112-5039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867421010631$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34624221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bauer, Benedikt W.</creatorcontrib><creatorcontrib>Davidson, Iain F.</creatorcontrib><creatorcontrib>Canena, Daniel</creatorcontrib><creatorcontrib>Wutz, Gordana</creatorcontrib><creatorcontrib>Tang, Wen</creatorcontrib><creatorcontrib>Litos, Gabriele</creatorcontrib><creatorcontrib>Horn, Sabrina</creatorcontrib><creatorcontrib>Hinterdorfer, Peter</creatorcontrib><creatorcontrib>Peters, Jan-Michael</creatorcontrib><title>Cohesin mediates DNA loop extrusion by a “swing and clamp” mechanism</title><title>Cell</title><addtitle>Cell</addtitle><description>Structural maintenance of chromosomes (SMC) complexes organize genome topology in all kingdoms of life and have been proposed to perform this function by DNA loop extrusion. How this process works is unknown. Here, we have analyzed how loop extrusion is mediated by human cohesin-NIPBL complexes, which enable chromatin folding in interphase cells. We have identified DNA binding sites and large-scale conformational changes that are required for loop extrusion and have determined how these are coordinated. Our results suggest that DNA is translocated by a spontaneous 50 nm-swing of cohesin’s hinge, which hands DNA over to the ATPase head of SMC3, where upon binding of ATP, DNA is clamped by NIPBL. During this process, NIPBL “jumps ship” from the hinge toward the SMC3 head and might thereby couple the spontaneous hinge swing to ATP-dependent DNA clamping. These results reveal mechanistic principles of how cohesin-NIPBL and possibly other SMC complexes mediate loop extrusion.
[Display omitted]
•Identification of cohesin’s DNA binding sites and movements needed for loop extrusion•A DNA binding site on the hinge might translocate DNA by ATP-independent swinging•DNA clamping on the ATPase heads is regulated by ATP-dependent engagement cycles•NIPBL couples ATP-independent and -dependent DNA translocation events
Cohesin hands DNA over long distances from one binding site to another, explaining how SMC complexes might fold genomes in all kingdoms of life.</description><subject>Adenosine Triphosphatases - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Binding Sites</subject><subject>Cell Cycle Proteins - chemistry</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>cohesin</subject><subject>Cohesins</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>genome architecture</subject><subject>HeLa Cells</subject><subject>high speed AFM</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>Kinetics</subject><subject>loop extrusion</subject><subject>Microscopy, Atomic Force</subject><subject>Models, Molecular</subject><subject>NIPBL</subject><subject>Nuclear Proteins - metabolism</subject><subject>Nucleic Acid Conformation</subject><subject>Protein Conformation</subject><subject>single molecule FRET</subject><subject>SMC complexes</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctOHDEQRS0UBMPjB1hEXmbTnfKrH1IUCQ0hICHYwNpyuz2MR932YPfw2PEh4ef4EtwMILJhZanq3uPSvQgdEMgJkOLnItem63IKlORQ52m0gSYE6jLjpKTf0ASgpllVlHwb7cS4AIBKCLGFthkvKKeUTNDJ1M9NtA73prVqMBEfnR_izvslNvdDWEXrHW4esMLPj__inXXXWLkW6071y-fHp2TTc-Vs7PfQ5kx10ey_vbvo6vjP5fQkO7v4ezo9PMs0F2LIeF3ShjOhyllRElbVgpKyMZQx1QKvRKFEM-5FVbVMcK1YrShhdWEKraBgbBf9XnOXqybdrI0bgurkMthehQfplZX_b5ydy2t_KxObsVfAjzdA8DcrEwfZ2zgGqZzxqyipqKAEYJQmKV1LdfAxBjP7-IaAHCuQCzk65ViBhFqmUTJ9_3zgh-U98yT4tRaYFNOtNUFGbY3TqYBg9CBbb7_ivwDR15ip</recordid><startdate>20211014</startdate><enddate>20211014</enddate><creator>Bauer, Benedikt W.</creator><creator>Davidson, Iain F.</creator><creator>Canena, Daniel</creator><creator>Wutz, Gordana</creator><creator>Tang, Wen</creator><creator>Litos, Gabriele</creator><creator>Horn, Sabrina</creator><creator>Hinterdorfer, Peter</creator><creator>Peters, Jan-Michael</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4945-6415</orcidid><orcidid>https://orcid.org/0000-0002-6842-0795</orcidid><orcidid>https://orcid.org/0000-0002-2113-4986</orcidid><orcidid>https://orcid.org/0000-0003-2583-1305</orcidid><orcidid>https://orcid.org/0000-0001-5112-5039</orcidid></search><sort><creationdate>20211014</creationdate><title>Cohesin mediates DNA loop extrusion by a “swing and clamp” mechanism</title><author>Bauer, Benedikt W. ; Davidson, Iain F. ; Canena, Daniel ; Wutz, Gordana ; Tang, Wen ; Litos, Gabriele ; Horn, Sabrina ; Hinterdorfer, Peter ; Peters, Jan-Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-4972b435a7f6713895217be233ad04856a5bb435588d354ca39a21396e6ca0633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenosine Triphosphatases - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Binding Sites</topic><topic>Cell Cycle Proteins - chemistry</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>cohesin</topic><topic>Cohesins</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>genome architecture</topic><topic>HeLa Cells</topic><topic>high speed AFM</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>Kinetics</topic><topic>loop extrusion</topic><topic>Microscopy, Atomic Force</topic><topic>Models, Molecular</topic><topic>NIPBL</topic><topic>Nuclear Proteins - metabolism</topic><topic>Nucleic Acid Conformation</topic><topic>Protein Conformation</topic><topic>single molecule FRET</topic><topic>SMC complexes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bauer, Benedikt W.</creatorcontrib><creatorcontrib>Davidson, Iain F.</creatorcontrib><creatorcontrib>Canena, Daniel</creatorcontrib><creatorcontrib>Wutz, Gordana</creatorcontrib><creatorcontrib>Tang, Wen</creatorcontrib><creatorcontrib>Litos, Gabriele</creatorcontrib><creatorcontrib>Horn, Sabrina</creatorcontrib><creatorcontrib>Hinterdorfer, Peter</creatorcontrib><creatorcontrib>Peters, Jan-Michael</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bauer, Benedikt W.</au><au>Davidson, Iain F.</au><au>Canena, Daniel</au><au>Wutz, Gordana</au><au>Tang, Wen</au><au>Litos, Gabriele</au><au>Horn, Sabrina</au><au>Hinterdorfer, Peter</au><au>Peters, Jan-Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cohesin mediates DNA loop extrusion by a “swing and clamp” mechanism</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2021-10-14</date><risdate>2021</risdate><volume>184</volume><issue>21</issue><spage>5448</spage><epage>5464.e22</epage><pages>5448-5464.e22</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Structural maintenance of chromosomes (SMC) complexes organize genome topology in all kingdoms of life and have been proposed to perform this function by DNA loop extrusion. How this process works is unknown. Here, we have analyzed how loop extrusion is mediated by human cohesin-NIPBL complexes, which enable chromatin folding in interphase cells. We have identified DNA binding sites and large-scale conformational changes that are required for loop extrusion and have determined how these are coordinated. Our results suggest that DNA is translocated by a spontaneous 50 nm-swing of cohesin’s hinge, which hands DNA over to the ATPase head of SMC3, where upon binding of ATP, DNA is clamped by NIPBL. During this process, NIPBL “jumps ship” from the hinge toward the SMC3 head and might thereby couple the spontaneous hinge swing to ATP-dependent DNA clamping. These results reveal mechanistic principles of how cohesin-NIPBL and possibly other SMC complexes mediate loop extrusion.
[Display omitted]
•Identification of cohesin’s DNA binding sites and movements needed for loop extrusion•A DNA binding site on the hinge might translocate DNA by ATP-independent swinging•DNA clamping on the ATPase heads is regulated by ATP-dependent engagement cycles•NIPBL couples ATP-independent and -dependent DNA translocation events
Cohesin hands DNA over long distances from one binding site to another, explaining how SMC complexes might fold genomes in all kingdoms of life.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34624221</pmid><doi>10.1016/j.cell.2021.09.016</doi><orcidid>https://orcid.org/0000-0003-4945-6415</orcidid><orcidid>https://orcid.org/0000-0002-6842-0795</orcidid><orcidid>https://orcid.org/0000-0002-2113-4986</orcidid><orcidid>https://orcid.org/0000-0003-2583-1305</orcidid><orcidid>https://orcid.org/0000-0001-5112-5039</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2021-10, Vol.184 (21), p.5448-5464.e22 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8563363 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adenosine Triphosphatases - metabolism Adenosine Triphosphate - metabolism Binding Sites Cell Cycle Proteins - chemistry Cell Cycle Proteins - metabolism Chromosomal Proteins, Non-Histone - metabolism cohesin Cohesins DNA - chemistry DNA - metabolism Fluorescence Resonance Energy Transfer genome architecture HeLa Cells high speed AFM Humans Hydrolysis Kinetics loop extrusion Microscopy, Atomic Force Models, Molecular NIPBL Nuclear Proteins - metabolism Nucleic Acid Conformation Protein Conformation single molecule FRET SMC complexes |
title | Cohesin mediates DNA loop extrusion by a “swing and clamp” mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A43%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cohesin%20mediates%20DNA%20loop%20extrusion%20by%20a%20%E2%80%9Cswing%20and%20clamp%E2%80%9D%20mechanism&rft.jtitle=Cell&rft.au=Bauer,%20Benedikt%20W.&rft.date=2021-10-14&rft.volume=184&rft.issue=21&rft.spage=5448&rft.epage=5464.e22&rft.pages=5448-5464.e22&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2021.09.016&rft_dat=%3Cproquest_pubme%3E2580700322%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580700322&rft_id=info:pmid/34624221&rft_els_id=S0092867421010631&rfr_iscdi=true |