A Sequential Quadratic Programming Approach for the Predictive Control of the COVID-19 Spread

The COVID-19 pandemic is the defying crisis of our time. Since mass vaccination has not yet been established, countries still have been facing many issues due to the viral spread. Even in cities with high seroprevalence, intense resurgent waves of COVID-19 have been registered, possibly due to viral...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IFAC-PapersOnLine 2021, Vol.54 (15), p.139-144
Hauptverfasser: Morato, Marcelo M, Dos Reis, Gulherme N G, Normey-Rico, Julio E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue 15
container_start_page 139
container_title IFAC-PapersOnLine
container_volume 54
creator Morato, Marcelo M
Dos Reis, Gulherme N G
Normey-Rico, Julio E
description The COVID-19 pandemic is the defying crisis of our time. Since mass vaccination has not yet been established, countries still have been facing many issues due to the viral spread. Even in cities with high seroprevalence, intense resurgent waves of COVID-19 have been registered, possibly due to viral variants with greater transmission rates. Accordingly, we develop a new Model Predictive Control (MPC) framework that is able to determine social distancing guidelines and altogether provide estimates for the future epidemiological characteristic of the contagion. For such, the viral dynamics are represented through a Linear Parameter Varying (LPV) version of the Susceptible-Infected-Recovered-Deceased (SIRD) model. The solution of the LPV MPC problem is based on a Sequential Quadratic Program (SQP). This SQP provides convergent estimates of the future LPV scheduling parameters. We use real data to illustrate the efficiency of the proposed method to mitigate this contagion while vaccination is ongoing.
doi_str_mv 10.1016/j.ifacol.2021.10.245
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8562103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039807154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-6ee5455188308080b1595078882c708a548816dc4661541a0befe34e5b6f146e3</originalsourceid><addsrcrecordid>eNpVkVtL9DAQhoN8oqL-A5FcetN10hw2vRGW_TyBoOLhTkI2ne5maZuadgX_vVlXRcnFhHln3knmIeSIwYgBU6fLka-sC_Uoh5yl1CgXcovs5QJkpgvF__2675LDvl8CQF4oMS70DtnlWuVQSL1HXib0AV9X2A7e1vR-ZctoB-_oXQzzaJvGt3M66boYrFvQKkQ6LDCJWHo3-Dek09AOMdQ0VJ_K9Pb5-n_GCvrQRbTlAdmubN3j4VfcJ08X54_Tq-zm9vJ6OrnJnAA9ZApRCimZ1hx0OjMmCwljrXXuxqCtFFozVTqhFJOCWZhhhVygnKmKCYV8n5xtfLvVrMHSpe9EW5su-sbGdxOsN3-V1i_MPLwZLVXOgCeDky-DGNI2-sE0vndY17bFsOoNB15oGKfpqVRsSl0MfR-x-hnDwKzhmKXZwDFrOOtsgpPajn8_8afpGwX_AOBRi7E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039807154</pqid></control><display><type>article</type><title>A Sequential Quadratic Programming Approach for the Predictive Control of the COVID-19 Spread</title><source>Alma/SFX Local Collection</source><creator>Morato, Marcelo M ; Dos Reis, Gulherme N G ; Normey-Rico, Julio E</creator><creatorcontrib>Morato, Marcelo M ; Dos Reis, Gulherme N G ; Normey-Rico, Julio E</creatorcontrib><description>The COVID-19 pandemic is the defying crisis of our time. Since mass vaccination has not yet been established, countries still have been facing many issues due to the viral spread. Even in cities with high seroprevalence, intense resurgent waves of COVID-19 have been registered, possibly due to viral variants with greater transmission rates. Accordingly, we develop a new Model Predictive Control (MPC) framework that is able to determine social distancing guidelines and altogether provide estimates for the future epidemiological characteristic of the contagion. For such, the viral dynamics are represented through a Linear Parameter Varying (LPV) version of the Susceptible-Infected-Recovered-Deceased (SIRD) model. The solution of the LPV MPC problem is based on a Sequential Quadratic Program (SQP). This SQP provides convergent estimates of the future LPV scheduling parameters. We use real data to illustrate the efficiency of the proposed method to mitigate this contagion while vaccination is ongoing.</description><identifier>ISSN: 2405-8963</identifier><identifier>EISSN: 2405-8963</identifier><identifier>DOI: 10.1016/j.ifacol.2021.10.245</identifier><identifier>PMID: 38620958</identifier><language>eng</language><publisher>Netherlands: IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd</publisher><ispartof>IFAC-PapersOnLine, 2021, Vol.54 (15), p.139-144</ispartof><rights>2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd.</rights><rights>2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-6ee5455188308080b1595078882c708a548816dc4661541a0befe34e5b6f146e3</citedby><cites>FETCH-LOGICAL-c408t-6ee5455188308080b1595078882c708a548816dc4661541a0befe34e5b6f146e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38620958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morato, Marcelo M</creatorcontrib><creatorcontrib>Dos Reis, Gulherme N G</creatorcontrib><creatorcontrib>Normey-Rico, Julio E</creatorcontrib><title>A Sequential Quadratic Programming Approach for the Predictive Control of the COVID-19 Spread</title><title>IFAC-PapersOnLine</title><addtitle>IFAC Pap OnLine</addtitle><description>The COVID-19 pandemic is the defying crisis of our time. Since mass vaccination has not yet been established, countries still have been facing many issues due to the viral spread. Even in cities with high seroprevalence, intense resurgent waves of COVID-19 have been registered, possibly due to viral variants with greater transmission rates. Accordingly, we develop a new Model Predictive Control (MPC) framework that is able to determine social distancing guidelines and altogether provide estimates for the future epidemiological characteristic of the contagion. For such, the viral dynamics are represented through a Linear Parameter Varying (LPV) version of the Susceptible-Infected-Recovered-Deceased (SIRD) model. The solution of the LPV MPC problem is based on a Sequential Quadratic Program (SQP). This SQP provides convergent estimates of the future LPV scheduling parameters. We use real data to illustrate the efficiency of the proposed method to mitigate this contagion while vaccination is ongoing.</description><issn>2405-8963</issn><issn>2405-8963</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkVtL9DAQhoN8oqL-A5FcetN10hw2vRGW_TyBoOLhTkI2ne5maZuadgX_vVlXRcnFhHln3knmIeSIwYgBU6fLka-sC_Uoh5yl1CgXcovs5QJkpgvF__2675LDvl8CQF4oMS70DtnlWuVQSL1HXib0AV9X2A7e1vR-ZctoB-_oXQzzaJvGt3M66boYrFvQKkQ6LDCJWHo3-Dek09AOMdQ0VJ_K9Pb5-n_GCvrQRbTlAdmubN3j4VfcJ08X54_Tq-zm9vJ6OrnJnAA9ZApRCimZ1hx0OjMmCwljrXXuxqCtFFozVTqhFJOCWZhhhVygnKmKCYV8n5xtfLvVrMHSpe9EW5su-sbGdxOsN3-V1i_MPLwZLVXOgCeDky-DGNI2-sE0vndY17bFsOoNB15oGKfpqVRsSl0MfR-x-hnDwKzhmKXZwDFrOOtsgpPajn8_8afpGwX_AOBRi7E</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Morato, Marcelo M</creator><creator>Dos Reis, Gulherme N G</creator><creator>Normey-Rico, Julio E</creator><general>IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2021</creationdate><title>A Sequential Quadratic Programming Approach for the Predictive Control of the COVID-19 Spread</title><author>Morato, Marcelo M ; Dos Reis, Gulherme N G ; Normey-Rico, Julio E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-6ee5455188308080b1595078882c708a548816dc4661541a0befe34e5b6f146e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Morato, Marcelo M</creatorcontrib><creatorcontrib>Dos Reis, Gulherme N G</creatorcontrib><creatorcontrib>Normey-Rico, Julio E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IFAC-PapersOnLine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morato, Marcelo M</au><au>Dos Reis, Gulherme N G</au><au>Normey-Rico, Julio E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Sequential Quadratic Programming Approach for the Predictive Control of the COVID-19 Spread</atitle><jtitle>IFAC-PapersOnLine</jtitle><addtitle>IFAC Pap OnLine</addtitle><date>2021</date><risdate>2021</risdate><volume>54</volume><issue>15</issue><spage>139</spage><epage>144</epage><pages>139-144</pages><issn>2405-8963</issn><eissn>2405-8963</eissn><abstract>The COVID-19 pandemic is the defying crisis of our time. Since mass vaccination has not yet been established, countries still have been facing many issues due to the viral spread. Even in cities with high seroprevalence, intense resurgent waves of COVID-19 have been registered, possibly due to viral variants with greater transmission rates. Accordingly, we develop a new Model Predictive Control (MPC) framework that is able to determine social distancing guidelines and altogether provide estimates for the future epidemiological characteristic of the contagion. For such, the viral dynamics are represented through a Linear Parameter Varying (LPV) version of the Susceptible-Infected-Recovered-Deceased (SIRD) model. The solution of the LPV MPC problem is based on a Sequential Quadratic Program (SQP). This SQP provides convergent estimates of the future LPV scheduling parameters. We use real data to illustrate the efficiency of the proposed method to mitigate this contagion while vaccination is ongoing.</abstract><cop>Netherlands</cop><pub>IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd</pub><pmid>38620958</pmid><doi>10.1016/j.ifacol.2021.10.245</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2405-8963
ispartof IFAC-PapersOnLine, 2021, Vol.54 (15), p.139-144
issn 2405-8963
2405-8963
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8562103
source Alma/SFX Local Collection
title A Sequential Quadratic Programming Approach for the Predictive Control of the COVID-19 Spread
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A49%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Sequential%20Quadratic%20Programming%20Approach%20for%20the%20Predictive%20Control%20of%20the%20COVID-19%20Spread&rft.jtitle=IFAC-PapersOnLine&rft.au=Morato,%20Marcelo%20M&rft.date=2021&rft.volume=54&rft.issue=15&rft.spage=139&rft.epage=144&rft.pages=139-144&rft.issn=2405-8963&rft.eissn=2405-8963&rft_id=info:doi/10.1016/j.ifacol.2021.10.245&rft_dat=%3Cproquest_pubme%3E3039807154%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039807154&rft_id=info:pmid/38620958&rfr_iscdi=true