Phospholipid‐flippase chaperone CDC50A is required for synapse maintenance by regulating phosphatidylserine exposure
Synaptic refinement is a critical physiological process that removes excess synapses to establish and maintain functional neuronal circuits. Recent studies have shown that focal exposure of phosphatidylserine (PS) on synapses acts as an “eat me” signal to mediate synaptic pruning. However, the molec...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2021-11, Vol.40 (21), p.e107915-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 21 |
container_start_page | e107915 |
container_title | The EMBO journal |
container_volume | 40 |
creator | Li, Tao Yu, Diankun Oak, Hayeon C Zhu, Beika Wang, Li Jiang, Xueqiao Molday, Robert S Kriegstein, Arnold Piao, Xianhua |
description | Synaptic refinement is a critical physiological process that removes excess synapses to establish and maintain functional neuronal circuits. Recent studies have shown that focal exposure of phosphatidylserine (PS) on synapses acts as an “eat me” signal to mediate synaptic pruning. However, the molecular mechanism underlying PS externalization at synapses remains elusive. Here, we find that murine CDC50A, a chaperone of phospholipid flippases, localizes to synapses, and that its expression depends on neuronal activity. Cdc50a knockdown leads to phosphatidylserine exposure at synapses and subsequent erroneous synapse removal by microglia partly via the GPR56 pathway. Taken together, our data support that CDC50A safeguards synapse maintenance by regulating focal phosphatidylserine exposure at synapses.
Synopsis
CDC50A, a chaperone of phospholipid flippases, plays an important role in the maintenance of synapses. Cdc50a knockdown causes phosphatidylserine exposure at synapse and subsequent synaptic removal by microglia.
CDC50A is present at synapses and its expression is regulated by neuronal activity
CDC50A knockdown leads to PS exposure at synapses
CDC50A knockdown induces aberrant synaptic elimination by microglia
Microglial GPR56 in part mediates CDC50A knockdown‐induced synaptic removal
Graphical Abstract
Neuronal activity‐dependent downregulation of CDC50A leads to phosphatidylserine exposure and aberrant synaptic removal by microglia. |
doi_str_mv | 10.15252/embj.2021107915 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8561630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577732838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5855-433ab64a9c7e43aed9f46799f6351385d0553fec7818b57f1a1e5923447eb86c3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EokNhzwpFYsMmxb-xLSGkMpQWVAQLWFtOcjPjUWKn9qSQHY_AM_IkdTulpUiIla_s7xyd64PQU4IPiKCCvoSh3hxQTAnBUhNxDy0Ir3BJsRT30QLTipScKL2HHqW0wRgLJclDtMe4UEJKvEDnn9chjevQu9G1v3787PIw2gRFs7YjxOChWL5dCnxYuFREOJtchLboQizS7O2YwcE6vwVvfQNFPWdmNfV26_yqGK-s89zOfYLoshd8H0OaIjxGDzqbL59cn_vo67ujL8uT8vTT8fvl4WnZ5ICi5IzZuuJWNxI4s9DqjldS665igjAlWiwE66CRiqhayI5YAkJTxrmEWlUN20evd77jVA_QNuC30fZmjG6wcTbBOnP3xbu1WYVzo0RFKoazwYtrgxjOJkhbM7jUQN9bD2FKhuZvlIwqpjL6_C90E6bo83qZ0lhXmiuRKbyjmhhSitDdhCHYXJVqLks1t6VmybM_l7gR_G4xA692wDfXw_xfQ3P08c2HO_5kJ09Z6VcQb4P_M9MFkqrCbA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2590969485</pqid></control><display><type>article</type><title>Phospholipid‐flippase chaperone CDC50A is required for synapse maintenance by regulating phosphatidylserine exposure</title><source>Springer Nature OA Free Journals</source><creator>Li, Tao ; Yu, Diankun ; Oak, Hayeon C ; Zhu, Beika ; Wang, Li ; Jiang, Xueqiao ; Molday, Robert S ; Kriegstein, Arnold ; Piao, Xianhua</creator><creatorcontrib>Li, Tao ; Yu, Diankun ; Oak, Hayeon C ; Zhu, Beika ; Wang, Li ; Jiang, Xueqiao ; Molday, Robert S ; Kriegstein, Arnold ; Piao, Xianhua</creatorcontrib><description>Synaptic refinement is a critical physiological process that removes excess synapses to establish and maintain functional neuronal circuits. Recent studies have shown that focal exposure of phosphatidylserine (PS) on synapses acts as an “eat me” signal to mediate synaptic pruning. However, the molecular mechanism underlying PS externalization at synapses remains elusive. Here, we find that murine CDC50A, a chaperone of phospholipid flippases, localizes to synapses, and that its expression depends on neuronal activity. Cdc50a knockdown leads to phosphatidylserine exposure at synapses and subsequent erroneous synapse removal by microglia partly via the GPR56 pathway. Taken together, our data support that CDC50A safeguards synapse maintenance by regulating focal phosphatidylserine exposure at synapses.
Synopsis
CDC50A, a chaperone of phospholipid flippases, plays an important role in the maintenance of synapses. Cdc50a knockdown causes phosphatidylserine exposure at synapse and subsequent synaptic removal by microglia.
CDC50A is present at synapses and its expression is regulated by neuronal activity
CDC50A knockdown leads to PS exposure at synapses
CDC50A knockdown induces aberrant synaptic elimination by microglia
Microglial GPR56 in part mediates CDC50A knockdown‐induced synaptic removal
Graphical Abstract
Neuronal activity‐dependent downregulation of CDC50A leads to phosphatidylserine exposure and aberrant synaptic removal by microglia.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2021107915</identifier><identifier>PMID: 34585770</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; CDC50A ; EMBO27 ; Exposure ; Functional morphology ; Gene Expression Regulation ; Genes, Reporter ; GPR56 ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Maintenance ; Male ; Membrane Proteins - antagonists & inhibitors ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Microglia ; Microglia - cytology ; Microglia - drug effects ; Microglia - metabolism ; Neuronal Plasticity ; Neurons - cytology ; Neurons - drug effects ; Neurons - metabolism ; Phosphatidylserine ; Phosphatidylserines - metabolism ; Phosphatidylserines - pharmacology ; Phospholipids ; Receptors, G-Protein-Coupled - genetics ; Receptors, G-Protein-Coupled - metabolism ; Red Fluorescent Protein ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Synapse elimination ; Synapses ; Synapses - drug effects ; Synapses - genetics ; Synapses - metabolism ; Synaptic Transmission ; Synaptosomes - drug effects ; Synaptosomes - metabolism ; Vesicular Glutamate Transport Protein 2</subject><ispartof>The EMBO journal, 2021-11, Vol.40 (21), p.e107915-n/a</ispartof><rights>The Author(s) 2021</rights><rights>2021 The Authors</rights><rights>2021 The Authors.</rights><rights>2021 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5855-433ab64a9c7e43aed9f46799f6351385d0553fec7818b57f1a1e5923447eb86c3</citedby><cites>FETCH-LOGICAL-c5855-433ab64a9c7e43aed9f46799f6351385d0553fec7818b57f1a1e5923447eb86c3</cites><orcidid>0000-0002-4479-1831 ; 0000-0002-9174-1271 ; 0000-0001-7540-6767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8561630/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8561630/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,1412,1428,27905,27906,41101,42170,45555,45556,46390,46814,51557,53772,53774</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embj.2021107915$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34585770$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Yu, Diankun</creatorcontrib><creatorcontrib>Oak, Hayeon C</creatorcontrib><creatorcontrib>Zhu, Beika</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Jiang, Xueqiao</creatorcontrib><creatorcontrib>Molday, Robert S</creatorcontrib><creatorcontrib>Kriegstein, Arnold</creatorcontrib><creatorcontrib>Piao, Xianhua</creatorcontrib><title>Phospholipid‐flippase chaperone CDC50A is required for synapse maintenance by regulating phosphatidylserine exposure</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Synaptic refinement is a critical physiological process that removes excess synapses to establish and maintain functional neuronal circuits. Recent studies have shown that focal exposure of phosphatidylserine (PS) on synapses acts as an “eat me” signal to mediate synaptic pruning. However, the molecular mechanism underlying PS externalization at synapses remains elusive. Here, we find that murine CDC50A, a chaperone of phospholipid flippases, localizes to synapses, and that its expression depends on neuronal activity. Cdc50a knockdown leads to phosphatidylserine exposure at synapses and subsequent erroneous synapse removal by microglia partly via the GPR56 pathway. Taken together, our data support that CDC50A safeguards synapse maintenance by regulating focal phosphatidylserine exposure at synapses.
Synopsis
CDC50A, a chaperone of phospholipid flippases, plays an important role in the maintenance of synapses. Cdc50a knockdown causes phosphatidylserine exposure at synapse and subsequent synaptic removal by microglia.
CDC50A is present at synapses and its expression is regulated by neuronal activity
CDC50A knockdown leads to PS exposure at synapses
CDC50A knockdown induces aberrant synaptic elimination by microglia
Microglial GPR56 in part mediates CDC50A knockdown‐induced synaptic removal
Graphical Abstract
Neuronal activity‐dependent downregulation of CDC50A leads to phosphatidylserine exposure and aberrant synaptic removal by microglia.</description><subject>Animals</subject><subject>CDC50A</subject><subject>EMBO27</subject><subject>Exposure</subject><subject>Functional morphology</subject><subject>Gene Expression Regulation</subject><subject>Genes, Reporter</subject><subject>GPR56</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Maintenance</subject><subject>Male</subject><subject>Membrane Proteins - antagonists & inhibitors</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Microglia</subject><subject>Microglia - cytology</subject><subject>Microglia - drug effects</subject><subject>Microglia - metabolism</subject><subject>Neuronal Plasticity</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Phosphatidylserine</subject><subject>Phosphatidylserines - metabolism</subject><subject>Phosphatidylserines - pharmacology</subject><subject>Phospholipids</subject><subject>Receptors, G-Protein-Coupled - genetics</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>Red Fluorescent Protein</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Synapse elimination</subject><subject>Synapses</subject><subject>Synapses - drug effects</subject><subject>Synapses - genetics</subject><subject>Synapses - metabolism</subject><subject>Synaptic Transmission</subject><subject>Synaptosomes - drug effects</subject><subject>Synaptosomes - metabolism</subject><subject>Vesicular Glutamate Transport Protein 2</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EokNhzwpFYsMmxb-xLSGkMpQWVAQLWFtOcjPjUWKn9qSQHY_AM_IkdTulpUiIla_s7xyd64PQU4IPiKCCvoSh3hxQTAnBUhNxDy0Ir3BJsRT30QLTipScKL2HHqW0wRgLJclDtMe4UEJKvEDnn9chjevQu9G1v3787PIw2gRFs7YjxOChWL5dCnxYuFREOJtchLboQizS7O2YwcE6vwVvfQNFPWdmNfV26_yqGK-s89zOfYLoshd8H0OaIjxGDzqbL59cn_vo67ujL8uT8vTT8fvl4WnZ5ICi5IzZuuJWNxI4s9DqjldS665igjAlWiwE66CRiqhayI5YAkJTxrmEWlUN20evd77jVA_QNuC30fZmjG6wcTbBOnP3xbu1WYVzo0RFKoazwYtrgxjOJkhbM7jUQN9bD2FKhuZvlIwqpjL6_C90E6bo83qZ0lhXmiuRKbyjmhhSitDdhCHYXJVqLks1t6VmybM_l7gR_G4xA692wDfXw_xfQ3P08c2HO_5kJ09Z6VcQb4P_M9MFkqrCbA</recordid><startdate>20211102</startdate><enddate>20211102</enddate><creator>Li, Tao</creator><creator>Yu, Diankun</creator><creator>Oak, Hayeon C</creator><creator>Zhu, Beika</creator><creator>Wang, Li</creator><creator>Jiang, Xueqiao</creator><creator>Molday, Robert S</creator><creator>Kriegstein, Arnold</creator><creator>Piao, Xianhua</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4479-1831</orcidid><orcidid>https://orcid.org/0000-0002-9174-1271</orcidid><orcidid>https://orcid.org/0000-0001-7540-6767</orcidid></search><sort><creationdate>20211102</creationdate><title>Phospholipid‐flippase chaperone CDC50A is required for synapse maintenance by regulating phosphatidylserine exposure</title><author>Li, Tao ; Yu, Diankun ; Oak, Hayeon C ; Zhu, Beika ; Wang, Li ; Jiang, Xueqiao ; Molday, Robert S ; Kriegstein, Arnold ; Piao, Xianhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5855-433ab64a9c7e43aed9f46799f6351385d0553fec7818b57f1a1e5923447eb86c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>CDC50A</topic><topic>EMBO27</topic><topic>Exposure</topic><topic>Functional morphology</topic><topic>Gene Expression Regulation</topic><topic>Genes, Reporter</topic><topic>GPR56</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Maintenance</topic><topic>Male</topic><topic>Membrane Proteins - antagonists & inhibitors</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Microglia</topic><topic>Microglia - cytology</topic><topic>Microglia - drug effects</topic><topic>Microglia - metabolism</topic><topic>Neuronal Plasticity</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Phosphatidylserine</topic><topic>Phosphatidylserines - metabolism</topic><topic>Phosphatidylserines - pharmacology</topic><topic>Phospholipids</topic><topic>Receptors, G-Protein-Coupled - genetics</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>Red Fluorescent Protein</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Synapse elimination</topic><topic>Synapses</topic><topic>Synapses - drug effects</topic><topic>Synapses - genetics</topic><topic>Synapses - metabolism</topic><topic>Synaptic Transmission</topic><topic>Synaptosomes - drug effects</topic><topic>Synaptosomes - metabolism</topic><topic>Vesicular Glutamate Transport Protein 2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Yu, Diankun</creatorcontrib><creatorcontrib>Oak, Hayeon C</creatorcontrib><creatorcontrib>Zhu, Beika</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Jiang, Xueqiao</creatorcontrib><creatorcontrib>Molday, Robert S</creatorcontrib><creatorcontrib>Kriegstein, Arnold</creatorcontrib><creatorcontrib>Piao, Xianhua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Tao</au><au>Yu, Diankun</au><au>Oak, Hayeon C</au><au>Zhu, Beika</au><au>Wang, Li</au><au>Jiang, Xueqiao</au><au>Molday, Robert S</au><au>Kriegstein, Arnold</au><au>Piao, Xianhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phospholipid‐flippase chaperone CDC50A is required for synapse maintenance by regulating phosphatidylserine exposure</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2021-11-02</date><risdate>2021</risdate><volume>40</volume><issue>21</issue><spage>e107915</spage><epage>n/a</epage><pages>e107915-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>Synaptic refinement is a critical physiological process that removes excess synapses to establish and maintain functional neuronal circuits. Recent studies have shown that focal exposure of phosphatidylserine (PS) on synapses acts as an “eat me” signal to mediate synaptic pruning. However, the molecular mechanism underlying PS externalization at synapses remains elusive. Here, we find that murine CDC50A, a chaperone of phospholipid flippases, localizes to synapses, and that its expression depends on neuronal activity. Cdc50a knockdown leads to phosphatidylserine exposure at synapses and subsequent erroneous synapse removal by microglia partly via the GPR56 pathway. Taken together, our data support that CDC50A safeguards synapse maintenance by regulating focal phosphatidylserine exposure at synapses.
Synopsis
CDC50A, a chaperone of phospholipid flippases, plays an important role in the maintenance of synapses. Cdc50a knockdown causes phosphatidylserine exposure at synapse and subsequent synaptic removal by microglia.
CDC50A is present at synapses and its expression is regulated by neuronal activity
CDC50A knockdown leads to PS exposure at synapses
CDC50A knockdown induces aberrant synaptic elimination by microglia
Microglial GPR56 in part mediates CDC50A knockdown‐induced synaptic removal
Graphical Abstract
Neuronal activity‐dependent downregulation of CDC50A leads to phosphatidylserine exposure and aberrant synaptic removal by microglia.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34585770</pmid><doi>10.15252/embj.2021107915</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4479-1831</orcidid><orcidid>https://orcid.org/0000-0002-9174-1271</orcidid><orcidid>https://orcid.org/0000-0001-7540-6767</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2021-11, Vol.40 (21), p.e107915-n/a |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8561630 |
source | Springer Nature OA Free Journals |
subjects | Animals CDC50A EMBO27 Exposure Functional morphology Gene Expression Regulation Genes, Reporter GPR56 Luminescent Proteins - genetics Luminescent Proteins - metabolism Maintenance Male Membrane Proteins - antagonists & inhibitors Membrane Proteins - genetics Membrane Proteins - metabolism Mice Mice, Inbred C57BL Mice, Transgenic Microglia Microglia - cytology Microglia - drug effects Microglia - metabolism Neuronal Plasticity Neurons - cytology Neurons - drug effects Neurons - metabolism Phosphatidylserine Phosphatidylserines - metabolism Phosphatidylserines - pharmacology Phospholipids Receptors, G-Protein-Coupled - genetics Receptors, G-Protein-Coupled - metabolism Red Fluorescent Protein RNA, Small Interfering - genetics RNA, Small Interfering - metabolism Synapse elimination Synapses Synapses - drug effects Synapses - genetics Synapses - metabolism Synaptic Transmission Synaptosomes - drug effects Synaptosomes - metabolism Vesicular Glutamate Transport Protein 2 |
title | Phospholipid‐flippase chaperone CDC50A is required for synapse maintenance by regulating phosphatidylserine exposure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phospholipid%E2%80%90flippase%20chaperone%20CDC50A%20is%20required%20for%20synapse%20maintenance%20by%20regulating%20phosphatidylserine%20exposure&rft.jtitle=The%20EMBO%20journal&rft.au=Li,%20Tao&rft.date=2021-11-02&rft.volume=40&rft.issue=21&rft.spage=e107915&rft.epage=n/a&rft.pages=e107915-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2021107915&rft_dat=%3Cproquest_C6C%3E2577732838%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2590969485&rft_id=info:pmid/34585770&rfr_iscdi=true |