Phospholipid‐flippase chaperone CDC50A is required for synapse maintenance by regulating phosphatidylserine exposure

Synaptic refinement is a critical physiological process that removes excess synapses to establish and maintain functional neuronal circuits. Recent studies have shown that focal exposure of phosphatidylserine (PS) on synapses acts as an “eat me” signal to mediate synaptic pruning. However, the molec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2021-11, Vol.40 (21), p.e107915-n/a
Hauptverfasser: Li, Tao, Yu, Diankun, Oak, Hayeon C, Zhu, Beika, Wang, Li, Jiang, Xueqiao, Molday, Robert S, Kriegstein, Arnold, Piao, Xianhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 21
container_start_page e107915
container_title The EMBO journal
container_volume 40
creator Li, Tao
Yu, Diankun
Oak, Hayeon C
Zhu, Beika
Wang, Li
Jiang, Xueqiao
Molday, Robert S
Kriegstein, Arnold
Piao, Xianhua
description Synaptic refinement is a critical physiological process that removes excess synapses to establish and maintain functional neuronal circuits. Recent studies have shown that focal exposure of phosphatidylserine (PS) on synapses acts as an “eat me” signal to mediate synaptic pruning. However, the molecular mechanism underlying PS externalization at synapses remains elusive. Here, we find that murine CDC50A, a chaperone of phospholipid flippases, localizes to synapses, and that its expression depends on neuronal activity. Cdc50a knockdown leads to phosphatidylserine exposure at synapses and subsequent erroneous synapse removal by microglia partly via the GPR56 pathway. Taken together, our data support that CDC50A safeguards synapse maintenance by regulating focal phosphatidylserine exposure at synapses. Synopsis CDC50A, a chaperone of phospholipid flippases, plays an important role in the maintenance of synapses. Cdc50a knockdown causes phosphatidylserine exposure at synapse and subsequent synaptic removal by microglia. CDC50A is present at synapses and its expression is regulated by neuronal activity CDC50A knockdown leads to PS exposure at synapses CDC50A knockdown induces aberrant synaptic elimination by microglia Microglial GPR56 in part mediates CDC50A knockdown‐induced synaptic removal Graphical Abstract Neuronal activity‐dependent downregulation of CDC50A leads to phosphatidylserine exposure and aberrant synaptic removal by microglia.
doi_str_mv 10.15252/embj.2021107915
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8561630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577732838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5855-433ab64a9c7e43aed9f46799f6351385d0553fec7818b57f1a1e5923447eb86c3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EokNhzwpFYsMmxb-xLSGkMpQWVAQLWFtOcjPjUWKn9qSQHY_AM_IkdTulpUiIla_s7xyd64PQU4IPiKCCvoSh3hxQTAnBUhNxDy0Ir3BJsRT30QLTipScKL2HHqW0wRgLJclDtMe4UEJKvEDnn9chjevQu9G1v3787PIw2gRFs7YjxOChWL5dCnxYuFREOJtchLboQizS7O2YwcE6vwVvfQNFPWdmNfV26_yqGK-s89zOfYLoshd8H0OaIjxGDzqbL59cn_vo67ujL8uT8vTT8fvl4WnZ5ICi5IzZuuJWNxI4s9DqjldS665igjAlWiwE66CRiqhayI5YAkJTxrmEWlUN20evd77jVA_QNuC30fZmjG6wcTbBOnP3xbu1WYVzo0RFKoazwYtrgxjOJkhbM7jUQN9bD2FKhuZvlIwqpjL6_C90E6bo83qZ0lhXmiuRKbyjmhhSitDdhCHYXJVqLks1t6VmybM_l7gR_G4xA692wDfXw_xfQ3P08c2HO_5kJ09Z6VcQb4P_M9MFkqrCbA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2590969485</pqid></control><display><type>article</type><title>Phospholipid‐flippase chaperone CDC50A is required for synapse maintenance by regulating phosphatidylserine exposure</title><source>Springer Nature OA Free Journals</source><creator>Li, Tao ; Yu, Diankun ; Oak, Hayeon C ; Zhu, Beika ; Wang, Li ; Jiang, Xueqiao ; Molday, Robert S ; Kriegstein, Arnold ; Piao, Xianhua</creator><creatorcontrib>Li, Tao ; Yu, Diankun ; Oak, Hayeon C ; Zhu, Beika ; Wang, Li ; Jiang, Xueqiao ; Molday, Robert S ; Kriegstein, Arnold ; Piao, Xianhua</creatorcontrib><description>Synaptic refinement is a critical physiological process that removes excess synapses to establish and maintain functional neuronal circuits. Recent studies have shown that focal exposure of phosphatidylserine (PS) on synapses acts as an “eat me” signal to mediate synaptic pruning. However, the molecular mechanism underlying PS externalization at synapses remains elusive. Here, we find that murine CDC50A, a chaperone of phospholipid flippases, localizes to synapses, and that its expression depends on neuronal activity. Cdc50a knockdown leads to phosphatidylserine exposure at synapses and subsequent erroneous synapse removal by microglia partly via the GPR56 pathway. Taken together, our data support that CDC50A safeguards synapse maintenance by regulating focal phosphatidylserine exposure at synapses. Synopsis CDC50A, a chaperone of phospholipid flippases, plays an important role in the maintenance of synapses. Cdc50a knockdown causes phosphatidylserine exposure at synapse and subsequent synaptic removal by microglia. CDC50A is present at synapses and its expression is regulated by neuronal activity CDC50A knockdown leads to PS exposure at synapses CDC50A knockdown induces aberrant synaptic elimination by microglia Microglial GPR56 in part mediates CDC50A knockdown‐induced synaptic removal Graphical Abstract Neuronal activity‐dependent downregulation of CDC50A leads to phosphatidylserine exposure and aberrant synaptic removal by microglia.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2021107915</identifier><identifier>PMID: 34585770</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; CDC50A ; EMBO27 ; Exposure ; Functional morphology ; Gene Expression Regulation ; Genes, Reporter ; GPR56 ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Maintenance ; Male ; Membrane Proteins - antagonists &amp; inhibitors ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Microglia ; Microglia - cytology ; Microglia - drug effects ; Microglia - metabolism ; Neuronal Plasticity ; Neurons - cytology ; Neurons - drug effects ; Neurons - metabolism ; Phosphatidylserine ; Phosphatidylserines - metabolism ; Phosphatidylserines - pharmacology ; Phospholipids ; Receptors, G-Protein-Coupled - genetics ; Receptors, G-Protein-Coupled - metabolism ; Red Fluorescent Protein ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Synapse elimination ; Synapses ; Synapses - drug effects ; Synapses - genetics ; Synapses - metabolism ; Synaptic Transmission ; Synaptosomes - drug effects ; Synaptosomes - metabolism ; Vesicular Glutamate Transport Protein 2</subject><ispartof>The EMBO journal, 2021-11, Vol.40 (21), p.e107915-n/a</ispartof><rights>The Author(s) 2021</rights><rights>2021 The Authors</rights><rights>2021 The Authors.</rights><rights>2021 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5855-433ab64a9c7e43aed9f46799f6351385d0553fec7818b57f1a1e5923447eb86c3</citedby><cites>FETCH-LOGICAL-c5855-433ab64a9c7e43aed9f46799f6351385d0553fec7818b57f1a1e5923447eb86c3</cites><orcidid>0000-0002-4479-1831 ; 0000-0002-9174-1271 ; 0000-0001-7540-6767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8561630/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8561630/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,1412,1428,27905,27906,41101,42170,45555,45556,46390,46814,51557,53772,53774</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embj.2021107915$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34585770$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Yu, Diankun</creatorcontrib><creatorcontrib>Oak, Hayeon C</creatorcontrib><creatorcontrib>Zhu, Beika</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Jiang, Xueqiao</creatorcontrib><creatorcontrib>Molday, Robert S</creatorcontrib><creatorcontrib>Kriegstein, Arnold</creatorcontrib><creatorcontrib>Piao, Xianhua</creatorcontrib><title>Phospholipid‐flippase chaperone CDC50A is required for synapse maintenance by regulating phosphatidylserine exposure</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Synaptic refinement is a critical physiological process that removes excess synapses to establish and maintain functional neuronal circuits. Recent studies have shown that focal exposure of phosphatidylserine (PS) on synapses acts as an “eat me” signal to mediate synaptic pruning. However, the molecular mechanism underlying PS externalization at synapses remains elusive. Here, we find that murine CDC50A, a chaperone of phospholipid flippases, localizes to synapses, and that its expression depends on neuronal activity. Cdc50a knockdown leads to phosphatidylserine exposure at synapses and subsequent erroneous synapse removal by microglia partly via the GPR56 pathway. Taken together, our data support that CDC50A safeguards synapse maintenance by regulating focal phosphatidylserine exposure at synapses. Synopsis CDC50A, a chaperone of phospholipid flippases, plays an important role in the maintenance of synapses. Cdc50a knockdown causes phosphatidylserine exposure at synapse and subsequent synaptic removal by microglia. CDC50A is present at synapses and its expression is regulated by neuronal activity CDC50A knockdown leads to PS exposure at synapses CDC50A knockdown induces aberrant synaptic elimination by microglia Microglial GPR56 in part mediates CDC50A knockdown‐induced synaptic removal Graphical Abstract Neuronal activity‐dependent downregulation of CDC50A leads to phosphatidylserine exposure and aberrant synaptic removal by microglia.</description><subject>Animals</subject><subject>CDC50A</subject><subject>EMBO27</subject><subject>Exposure</subject><subject>Functional morphology</subject><subject>Gene Expression Regulation</subject><subject>Genes, Reporter</subject><subject>GPR56</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Maintenance</subject><subject>Male</subject><subject>Membrane Proteins - antagonists &amp; inhibitors</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Microglia</subject><subject>Microglia - cytology</subject><subject>Microglia - drug effects</subject><subject>Microglia - metabolism</subject><subject>Neuronal Plasticity</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Phosphatidylserine</subject><subject>Phosphatidylserines - metabolism</subject><subject>Phosphatidylserines - pharmacology</subject><subject>Phospholipids</subject><subject>Receptors, G-Protein-Coupled - genetics</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>Red Fluorescent Protein</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Synapse elimination</subject><subject>Synapses</subject><subject>Synapses - drug effects</subject><subject>Synapses - genetics</subject><subject>Synapses - metabolism</subject><subject>Synaptic Transmission</subject><subject>Synaptosomes - drug effects</subject><subject>Synaptosomes - metabolism</subject><subject>Vesicular Glutamate Transport Protein 2</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EokNhzwpFYsMmxb-xLSGkMpQWVAQLWFtOcjPjUWKn9qSQHY_AM_IkdTulpUiIla_s7xyd64PQU4IPiKCCvoSh3hxQTAnBUhNxDy0Ir3BJsRT30QLTipScKL2HHqW0wRgLJclDtMe4UEJKvEDnn9chjevQu9G1v3787PIw2gRFs7YjxOChWL5dCnxYuFREOJtchLboQizS7O2YwcE6vwVvfQNFPWdmNfV26_yqGK-s89zOfYLoshd8H0OaIjxGDzqbL59cn_vo67ujL8uT8vTT8fvl4WnZ5ICi5IzZuuJWNxI4s9DqjldS665igjAlWiwE66CRiqhayI5YAkJTxrmEWlUN20evd77jVA_QNuC30fZmjG6wcTbBOnP3xbu1WYVzo0RFKoazwYtrgxjOJkhbM7jUQN9bD2FKhuZvlIwqpjL6_C90E6bo83qZ0lhXmiuRKbyjmhhSitDdhCHYXJVqLks1t6VmybM_l7gR_G4xA692wDfXw_xfQ3P08c2HO_5kJ09Z6VcQb4P_M9MFkqrCbA</recordid><startdate>20211102</startdate><enddate>20211102</enddate><creator>Li, Tao</creator><creator>Yu, Diankun</creator><creator>Oak, Hayeon C</creator><creator>Zhu, Beika</creator><creator>Wang, Li</creator><creator>Jiang, Xueqiao</creator><creator>Molday, Robert S</creator><creator>Kriegstein, Arnold</creator><creator>Piao, Xianhua</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4479-1831</orcidid><orcidid>https://orcid.org/0000-0002-9174-1271</orcidid><orcidid>https://orcid.org/0000-0001-7540-6767</orcidid></search><sort><creationdate>20211102</creationdate><title>Phospholipid‐flippase chaperone CDC50A is required for synapse maintenance by regulating phosphatidylserine exposure</title><author>Li, Tao ; Yu, Diankun ; Oak, Hayeon C ; Zhu, Beika ; Wang, Li ; Jiang, Xueqiao ; Molday, Robert S ; Kriegstein, Arnold ; Piao, Xianhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5855-433ab64a9c7e43aed9f46799f6351385d0553fec7818b57f1a1e5923447eb86c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>CDC50A</topic><topic>EMBO27</topic><topic>Exposure</topic><topic>Functional morphology</topic><topic>Gene Expression Regulation</topic><topic>Genes, Reporter</topic><topic>GPR56</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Maintenance</topic><topic>Male</topic><topic>Membrane Proteins - antagonists &amp; inhibitors</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Microglia</topic><topic>Microglia - cytology</topic><topic>Microglia - drug effects</topic><topic>Microglia - metabolism</topic><topic>Neuronal Plasticity</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Phosphatidylserine</topic><topic>Phosphatidylserines - metabolism</topic><topic>Phosphatidylserines - pharmacology</topic><topic>Phospholipids</topic><topic>Receptors, G-Protein-Coupled - genetics</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>Red Fluorescent Protein</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Synapse elimination</topic><topic>Synapses</topic><topic>Synapses - drug effects</topic><topic>Synapses - genetics</topic><topic>Synapses - metabolism</topic><topic>Synaptic Transmission</topic><topic>Synaptosomes - drug effects</topic><topic>Synaptosomes - metabolism</topic><topic>Vesicular Glutamate Transport Protein 2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Yu, Diankun</creatorcontrib><creatorcontrib>Oak, Hayeon C</creatorcontrib><creatorcontrib>Zhu, Beika</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Jiang, Xueqiao</creatorcontrib><creatorcontrib>Molday, Robert S</creatorcontrib><creatorcontrib>Kriegstein, Arnold</creatorcontrib><creatorcontrib>Piao, Xianhua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Tao</au><au>Yu, Diankun</au><au>Oak, Hayeon C</au><au>Zhu, Beika</au><au>Wang, Li</au><au>Jiang, Xueqiao</au><au>Molday, Robert S</au><au>Kriegstein, Arnold</au><au>Piao, Xianhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phospholipid‐flippase chaperone CDC50A is required for synapse maintenance by regulating phosphatidylserine exposure</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2021-11-02</date><risdate>2021</risdate><volume>40</volume><issue>21</issue><spage>e107915</spage><epage>n/a</epage><pages>e107915-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>Synaptic refinement is a critical physiological process that removes excess synapses to establish and maintain functional neuronal circuits. Recent studies have shown that focal exposure of phosphatidylserine (PS) on synapses acts as an “eat me” signal to mediate synaptic pruning. However, the molecular mechanism underlying PS externalization at synapses remains elusive. Here, we find that murine CDC50A, a chaperone of phospholipid flippases, localizes to synapses, and that its expression depends on neuronal activity. Cdc50a knockdown leads to phosphatidylserine exposure at synapses and subsequent erroneous synapse removal by microglia partly via the GPR56 pathway. Taken together, our data support that CDC50A safeguards synapse maintenance by regulating focal phosphatidylserine exposure at synapses. Synopsis CDC50A, a chaperone of phospholipid flippases, plays an important role in the maintenance of synapses. Cdc50a knockdown causes phosphatidylserine exposure at synapse and subsequent synaptic removal by microglia. CDC50A is present at synapses and its expression is regulated by neuronal activity CDC50A knockdown leads to PS exposure at synapses CDC50A knockdown induces aberrant synaptic elimination by microglia Microglial GPR56 in part mediates CDC50A knockdown‐induced synaptic removal Graphical Abstract Neuronal activity‐dependent downregulation of CDC50A leads to phosphatidylserine exposure and aberrant synaptic removal by microglia.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34585770</pmid><doi>10.15252/embj.2021107915</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4479-1831</orcidid><orcidid>https://orcid.org/0000-0002-9174-1271</orcidid><orcidid>https://orcid.org/0000-0001-7540-6767</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2021-11, Vol.40 (21), p.e107915-n/a
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8561630
source Springer Nature OA Free Journals
subjects Animals
CDC50A
EMBO27
Exposure
Functional morphology
Gene Expression Regulation
Genes, Reporter
GPR56
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
Maintenance
Male
Membrane Proteins - antagonists & inhibitors
Membrane Proteins - genetics
Membrane Proteins - metabolism
Mice
Mice, Inbred C57BL
Mice, Transgenic
Microglia
Microglia - cytology
Microglia - drug effects
Microglia - metabolism
Neuronal Plasticity
Neurons - cytology
Neurons - drug effects
Neurons - metabolism
Phosphatidylserine
Phosphatidylserines - metabolism
Phosphatidylserines - pharmacology
Phospholipids
Receptors, G-Protein-Coupled - genetics
Receptors, G-Protein-Coupled - metabolism
Red Fluorescent Protein
RNA, Small Interfering - genetics
RNA, Small Interfering - metabolism
Synapse elimination
Synapses
Synapses - drug effects
Synapses - genetics
Synapses - metabolism
Synaptic Transmission
Synaptosomes - drug effects
Synaptosomes - metabolism
Vesicular Glutamate Transport Protein 2
title Phospholipid‐flippase chaperone CDC50A is required for synapse maintenance by regulating phosphatidylserine exposure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phospholipid%E2%80%90flippase%20chaperone%20CDC50A%20is%20required%20for%20synapse%20maintenance%20by%20regulating%20phosphatidylserine%20exposure&rft.jtitle=The%20EMBO%20journal&rft.au=Li,%20Tao&rft.date=2021-11-02&rft.volume=40&rft.issue=21&rft.spage=e107915&rft.epage=n/a&rft.pages=e107915-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2021107915&rft_dat=%3Cproquest_C6C%3E2577732838%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2590969485&rft_id=info:pmid/34585770&rfr_iscdi=true