SMAD4 is critical in suppression of BRAF-V600E serrated tumorigenesis

BRAF-driven colorectal cancer is among the poorest prognosis subtypes of colon cancer. Previous studies suggest that BRAF -mutant serrated cancers frequently exhibit Microsatellite Instability (MSI) and elevated levels of WNT signaling. The loss of tumor-suppressor Smad4 in oncogenic BRAF-V600E mous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2021-10, Vol.40 (41), p.6034-6048
Hauptverfasser: Tong, Kevin, Kothari, Om A., Haro, Katherine S., Panda, Anshuman, Bandari, Manisha M., Carrick, Jillian N., Hur, Joseph J., Zhang, Lanjing, Chan, Chang S., Xing, Jinchuan, Gatza, Michael L., Ganesan, Shridar, Verzi, Michael P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6048
container_issue 41
container_start_page 6034
container_title Oncogene
container_volume 40
creator Tong, Kevin
Kothari, Om A.
Haro, Katherine S.
Panda, Anshuman
Bandari, Manisha M.
Carrick, Jillian N.
Hur, Joseph J.
Zhang, Lanjing
Chan, Chang S.
Xing, Jinchuan
Gatza, Michael L.
Ganesan, Shridar
Verzi, Michael P.
description BRAF-driven colorectal cancer is among the poorest prognosis subtypes of colon cancer. Previous studies suggest that BRAF -mutant serrated cancers frequently exhibit Microsatellite Instability (MSI) and elevated levels of WNT signaling. The loss of tumor-suppressor Smad4 in oncogenic BRAF-V600E mouse models promotes rapid serrated tumor development and progression, and SMAD4 mutations co-occur in human patient tumors with BRAF-V600E mutations. This study assesses the role of SMAD4 in early-stage serrated tumorigenesis. SMAD4 loss promotes microsatellite stable (MSS) serrated tumors in an oncogenic BRAF-V600E context, providing a model for MSS serrated cancers. Inactivation of Msh2 in these mice accelerated tumor formation, and whole-exome sequencing of both MSS and MSI serrated tumors derived from these mouse models revealed that all serrated tumors developed oncogenic WNT mutations, predominantly in the WNT-effector gene Ctnnb1 (β-catenin). Mouse models mimicking the oncogenic β-catenin mutation show that the combination of three oncogenic mutations ( Ctnnb1, Braf , and Smad4 ) are critical to drive rapid serrated dysplasia formation. Re-analysis of human tumor data reveals BRAF-V600E mutations co-occur with oncogenic mutations in both WNT and SMAD4/TGFβ pathways. These findings identify SMAD4 as a critical factor in early-stage serrated cancers and helps broaden the knowledge of this rare but aggressive subset of colorectal cancer.
doi_str_mv 10.1038/s41388-021-01997-x
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8559887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A678996999</galeid><sourcerecordid>A678996999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-2016e8be156862c9fcdc4a997e9b1a47190fa69b829cd55e19734dd74d7111783</originalsourceid><addsrcrecordid>eNp9kV9rFDEUxYModq1-AR9kwOfU3PzPi7C2WxVaBG19DdlMZk3ZSdZkRuq3N7q1tSAlD4Hccw7n5ofQSyBHQJh-UzkwrTGhgAkYo_D1I7QAriQWwvDHaEGMINhQRg_Qs1qvCCHKEPoUHTDOBQPKF2j15Xx5wrtYO1_iFL3bdjF1dd7tSqg15tTloXv3eXmKv0pCVl0Npbgp9N00j7nETUihxvocPRnctoYXN_chujxdXRx_wGef3n88Xp5hLzhMmBKQQa8DCKkl9WbwveeuNQ9mDY4rMGRw0qw1Nb4XIoBRjPe94r0CAKXZIXq7z93N6zH0PqSpuK3dlTi68tNmF-39SYrf7Cb_sLr9iNaqBby-CSj5-xzqZK_yXFLrbKnQYATjEu5UG7cNNqYhtzA_xurtUiptjDTGNNXRf1Tt9GGMPqcwxPZ-z0D3Bl9yrSUMt8WB2N9E7Z6obUTtH6L2uple_bvyreUvwiZge0Fto7QJ5W6lB2J_AQ63qiA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581953461</pqid></control><display><type>article</type><title>SMAD4 is critical in suppression of BRAF-V600E serrated tumorigenesis</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Tong, Kevin ; Kothari, Om A. ; Haro, Katherine S. ; Panda, Anshuman ; Bandari, Manisha M. ; Carrick, Jillian N. ; Hur, Joseph J. ; Zhang, Lanjing ; Chan, Chang S. ; Xing, Jinchuan ; Gatza, Michael L. ; Ganesan, Shridar ; Verzi, Michael P.</creator><creatorcontrib>Tong, Kevin ; Kothari, Om A. ; Haro, Katherine S. ; Panda, Anshuman ; Bandari, Manisha M. ; Carrick, Jillian N. ; Hur, Joseph J. ; Zhang, Lanjing ; Chan, Chang S. ; Xing, Jinchuan ; Gatza, Michael L. ; Ganesan, Shridar ; Verzi, Michael P.</creatorcontrib><description>BRAF-driven colorectal cancer is among the poorest prognosis subtypes of colon cancer. Previous studies suggest that BRAF -mutant serrated cancers frequently exhibit Microsatellite Instability (MSI) and elevated levels of WNT signaling. The loss of tumor-suppressor Smad4 in oncogenic BRAF-V600E mouse models promotes rapid serrated tumor development and progression, and SMAD4 mutations co-occur in human patient tumors with BRAF-V600E mutations. This study assesses the role of SMAD4 in early-stage serrated tumorigenesis. SMAD4 loss promotes microsatellite stable (MSS) serrated tumors in an oncogenic BRAF-V600E context, providing a model for MSS serrated cancers. Inactivation of Msh2 in these mice accelerated tumor formation, and whole-exome sequencing of both MSS and MSI serrated tumors derived from these mouse models revealed that all serrated tumors developed oncogenic WNT mutations, predominantly in the WNT-effector gene Ctnnb1 (β-catenin). Mouse models mimicking the oncogenic β-catenin mutation show that the combination of three oncogenic mutations ( Ctnnb1, Braf , and Smad4 ) are critical to drive rapid serrated dysplasia formation. Re-analysis of human tumor data reveals BRAF-V600E mutations co-occur with oncogenic mutations in both WNT and SMAD4/TGFβ pathways. These findings identify SMAD4 as a critical factor in early-stage serrated cancers and helps broaden the knowledge of this rare but aggressive subset of colorectal cancer.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/s41388-021-01997-x</identifier><identifier>PMID: 34453124</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/51 ; 38/77 ; 45/23 ; 631/67/68 ; 631/67/70 ; 64/60 ; Animal models ; Animals ; Apoptosis ; Cancer ; Carcinogenesis ; Cell Biology ; Colon cancer ; Colorectal cancer ; Colorectal carcinoma ; Colorectal Neoplasms - metabolism ; Colorectal Neoplasms - pathology ; Development and progression ; Disease Models, Animal ; Dysplasia ; Gene mutations ; Genetic aspects ; Health aspects ; Human Genetics ; Humans ; Internal Medicine ; Medicine ; Medicine &amp; Public Health ; Mice ; Microsatellite instability ; Mimicry ; MSH2 protein ; Mutation ; Oncology ; Oncology, Experimental ; Proto-Oncogene Proteins B-raf - metabolism ; Smad proteins ; Smad4 protein ; Smad4 Protein - metabolism ; Tumorigenesis ; Tumors ; Wnt protein ; β-Catenin</subject><ispartof>Oncogene, 2021-10, Vol.40 (41), p.6034-6048</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-2016e8be156862c9fcdc4a997e9b1a47190fa69b829cd55e19734dd74d7111783</citedby><cites>FETCH-LOGICAL-c541t-2016e8be156862c9fcdc4a997e9b1a47190fa69b829cd55e19734dd74d7111783</cites><orcidid>0000-0001-9897-4759 ; 0000-0003-4082-4330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34453124$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tong, Kevin</creatorcontrib><creatorcontrib>Kothari, Om A.</creatorcontrib><creatorcontrib>Haro, Katherine S.</creatorcontrib><creatorcontrib>Panda, Anshuman</creatorcontrib><creatorcontrib>Bandari, Manisha M.</creatorcontrib><creatorcontrib>Carrick, Jillian N.</creatorcontrib><creatorcontrib>Hur, Joseph J.</creatorcontrib><creatorcontrib>Zhang, Lanjing</creatorcontrib><creatorcontrib>Chan, Chang S.</creatorcontrib><creatorcontrib>Xing, Jinchuan</creatorcontrib><creatorcontrib>Gatza, Michael L.</creatorcontrib><creatorcontrib>Ganesan, Shridar</creatorcontrib><creatorcontrib>Verzi, Michael P.</creatorcontrib><title>SMAD4 is critical in suppression of BRAF-V600E serrated tumorigenesis</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>BRAF-driven colorectal cancer is among the poorest prognosis subtypes of colon cancer. Previous studies suggest that BRAF -mutant serrated cancers frequently exhibit Microsatellite Instability (MSI) and elevated levels of WNT signaling. The loss of tumor-suppressor Smad4 in oncogenic BRAF-V600E mouse models promotes rapid serrated tumor development and progression, and SMAD4 mutations co-occur in human patient tumors with BRAF-V600E mutations. This study assesses the role of SMAD4 in early-stage serrated tumorigenesis. SMAD4 loss promotes microsatellite stable (MSS) serrated tumors in an oncogenic BRAF-V600E context, providing a model for MSS serrated cancers. Inactivation of Msh2 in these mice accelerated tumor formation, and whole-exome sequencing of both MSS and MSI serrated tumors derived from these mouse models revealed that all serrated tumors developed oncogenic WNT mutations, predominantly in the WNT-effector gene Ctnnb1 (β-catenin). Mouse models mimicking the oncogenic β-catenin mutation show that the combination of three oncogenic mutations ( Ctnnb1, Braf , and Smad4 ) are critical to drive rapid serrated dysplasia formation. Re-analysis of human tumor data reveals BRAF-V600E mutations co-occur with oncogenic mutations in both WNT and SMAD4/TGFβ pathways. These findings identify SMAD4 as a critical factor in early-stage serrated cancers and helps broaden the knowledge of this rare but aggressive subset of colorectal cancer.</description><subject>13/51</subject><subject>38/77</subject><subject>45/23</subject><subject>631/67/68</subject><subject>631/67/70</subject><subject>64/60</subject><subject>Animal models</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Cancer</subject><subject>Carcinogenesis</subject><subject>Cell Biology</subject><subject>Colon cancer</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Colorectal Neoplasms - metabolism</subject><subject>Colorectal Neoplasms - pathology</subject><subject>Development and progression</subject><subject>Disease Models, Animal</subject><subject>Dysplasia</subject><subject>Gene mutations</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>Microsatellite instability</subject><subject>Mimicry</subject><subject>MSH2 protein</subject><subject>Mutation</subject><subject>Oncology</subject><subject>Oncology, Experimental</subject><subject>Proto-Oncogene Proteins B-raf - metabolism</subject><subject>Smad proteins</subject><subject>Smad4 protein</subject><subject>Smad4 Protein - metabolism</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><subject>Wnt protein</subject><subject>β-Catenin</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kV9rFDEUxYModq1-AR9kwOfU3PzPi7C2WxVaBG19DdlMZk3ZSdZkRuq3N7q1tSAlD4Hccw7n5ofQSyBHQJh-UzkwrTGhgAkYo_D1I7QAriQWwvDHaEGMINhQRg_Qs1qvCCHKEPoUHTDOBQPKF2j15Xx5wrtYO1_iFL3bdjF1dd7tSqg15tTloXv3eXmKv0pCVl0Npbgp9N00j7nETUihxvocPRnctoYXN_chujxdXRx_wGef3n88Xp5hLzhMmBKQQa8DCKkl9WbwveeuNQ9mDY4rMGRw0qw1Nb4XIoBRjPe94r0CAKXZIXq7z93N6zH0PqSpuK3dlTi68tNmF-39SYrf7Cb_sLr9iNaqBby-CSj5-xzqZK_yXFLrbKnQYATjEu5UG7cNNqYhtzA_xurtUiptjDTGNNXRf1Tt9GGMPqcwxPZ-z0D3Bl9yrSUMt8WB2N9E7Z6obUTtH6L2uple_bvyreUvwiZge0Fto7QJ5W6lB2J_AQ63qiA</recordid><startdate>20211014</startdate><enddate>20211014</enddate><creator>Tong, Kevin</creator><creator>Kothari, Om A.</creator><creator>Haro, Katherine S.</creator><creator>Panda, Anshuman</creator><creator>Bandari, Manisha M.</creator><creator>Carrick, Jillian N.</creator><creator>Hur, Joseph J.</creator><creator>Zhang, Lanjing</creator><creator>Chan, Chang S.</creator><creator>Xing, Jinchuan</creator><creator>Gatza, Michael L.</creator><creator>Ganesan, Shridar</creator><creator>Verzi, Michael P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9897-4759</orcidid><orcidid>https://orcid.org/0000-0003-4082-4330</orcidid></search><sort><creationdate>20211014</creationdate><title>SMAD4 is critical in suppression of BRAF-V600E serrated tumorigenesis</title><author>Tong, Kevin ; Kothari, Om A. ; Haro, Katherine S. ; Panda, Anshuman ; Bandari, Manisha M. ; Carrick, Jillian N. ; Hur, Joseph J. ; Zhang, Lanjing ; Chan, Chang S. ; Xing, Jinchuan ; Gatza, Michael L. ; Ganesan, Shridar ; Verzi, Michael P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-2016e8be156862c9fcdc4a997e9b1a47190fa69b829cd55e19734dd74d7111783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13/51</topic><topic>38/77</topic><topic>45/23</topic><topic>631/67/68</topic><topic>631/67/70</topic><topic>64/60</topic><topic>Animal models</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Cancer</topic><topic>Carcinogenesis</topic><topic>Cell Biology</topic><topic>Colon cancer</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Colorectal Neoplasms - metabolism</topic><topic>Colorectal Neoplasms - pathology</topic><topic>Development and progression</topic><topic>Disease Models, Animal</topic><topic>Dysplasia</topic><topic>Gene mutations</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>Microsatellite instability</topic><topic>Mimicry</topic><topic>MSH2 protein</topic><topic>Mutation</topic><topic>Oncology</topic><topic>Oncology, Experimental</topic><topic>Proto-Oncogene Proteins B-raf - metabolism</topic><topic>Smad proteins</topic><topic>Smad4 protein</topic><topic>Smad4 Protein - metabolism</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><topic>Wnt protein</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Kevin</creatorcontrib><creatorcontrib>Kothari, Om A.</creatorcontrib><creatorcontrib>Haro, Katherine S.</creatorcontrib><creatorcontrib>Panda, Anshuman</creatorcontrib><creatorcontrib>Bandari, Manisha M.</creatorcontrib><creatorcontrib>Carrick, Jillian N.</creatorcontrib><creatorcontrib>Hur, Joseph J.</creatorcontrib><creatorcontrib>Zhang, Lanjing</creatorcontrib><creatorcontrib>Chan, Chang S.</creatorcontrib><creatorcontrib>Xing, Jinchuan</creatorcontrib><creatorcontrib>Gatza, Michael L.</creatorcontrib><creatorcontrib>Ganesan, Shridar</creatorcontrib><creatorcontrib>Verzi, Michael P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Kevin</au><au>Kothari, Om A.</au><au>Haro, Katherine S.</au><au>Panda, Anshuman</au><au>Bandari, Manisha M.</au><au>Carrick, Jillian N.</au><au>Hur, Joseph J.</au><au>Zhang, Lanjing</au><au>Chan, Chang S.</au><au>Xing, Jinchuan</au><au>Gatza, Michael L.</au><au>Ganesan, Shridar</au><au>Verzi, Michael P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SMAD4 is critical in suppression of BRAF-V600E serrated tumorigenesis</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2021-10-14</date><risdate>2021</risdate><volume>40</volume><issue>41</issue><spage>6034</spage><epage>6048</epage><pages>6034-6048</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>BRAF-driven colorectal cancer is among the poorest prognosis subtypes of colon cancer. Previous studies suggest that BRAF -mutant serrated cancers frequently exhibit Microsatellite Instability (MSI) and elevated levels of WNT signaling. The loss of tumor-suppressor Smad4 in oncogenic BRAF-V600E mouse models promotes rapid serrated tumor development and progression, and SMAD4 mutations co-occur in human patient tumors with BRAF-V600E mutations. This study assesses the role of SMAD4 in early-stage serrated tumorigenesis. SMAD4 loss promotes microsatellite stable (MSS) serrated tumors in an oncogenic BRAF-V600E context, providing a model for MSS serrated cancers. Inactivation of Msh2 in these mice accelerated tumor formation, and whole-exome sequencing of both MSS and MSI serrated tumors derived from these mouse models revealed that all serrated tumors developed oncogenic WNT mutations, predominantly in the WNT-effector gene Ctnnb1 (β-catenin). Mouse models mimicking the oncogenic β-catenin mutation show that the combination of three oncogenic mutations ( Ctnnb1, Braf , and Smad4 ) are critical to drive rapid serrated dysplasia formation. Re-analysis of human tumor data reveals BRAF-V600E mutations co-occur with oncogenic mutations in both WNT and SMAD4/TGFβ pathways. These findings identify SMAD4 as a critical factor in early-stage serrated cancers and helps broaden the knowledge of this rare but aggressive subset of colorectal cancer.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34453124</pmid><doi>10.1038/s41388-021-01997-x</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9897-4759</orcidid><orcidid>https://orcid.org/0000-0003-4082-4330</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2021-10, Vol.40 (41), p.6034-6048
issn 0950-9232
1476-5594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8559887
source MEDLINE; Alma/SFX Local Collection
subjects 13/51
38/77
45/23
631/67/68
631/67/70
64/60
Animal models
Animals
Apoptosis
Cancer
Carcinogenesis
Cell Biology
Colon cancer
Colorectal cancer
Colorectal carcinoma
Colorectal Neoplasms - metabolism
Colorectal Neoplasms - pathology
Development and progression
Disease Models, Animal
Dysplasia
Gene mutations
Genetic aspects
Health aspects
Human Genetics
Humans
Internal Medicine
Medicine
Medicine & Public Health
Mice
Microsatellite instability
Mimicry
MSH2 protein
Mutation
Oncology
Oncology, Experimental
Proto-Oncogene Proteins B-raf - metabolism
Smad proteins
Smad4 protein
Smad4 Protein - metabolism
Tumorigenesis
Tumors
Wnt protein
β-Catenin
title SMAD4 is critical in suppression of BRAF-V600E serrated tumorigenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SMAD4%20is%20critical%20in%20suppression%20of%20BRAF-V600E%20serrated%20tumorigenesis&rft.jtitle=Oncogene&rft.au=Tong,%20Kevin&rft.date=2021-10-14&rft.volume=40&rft.issue=41&rft.spage=6034&rft.epage=6048&rft.pages=6034-6048&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/s41388-021-01997-x&rft_dat=%3Cgale_pubme%3EA678996999%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581953461&rft_id=info:pmid/34453124&rft_galeid=A678996999&rfr_iscdi=true