SMAD4 is critical in suppression of BRAF-V600E serrated tumorigenesis
BRAF-driven colorectal cancer is among the poorest prognosis subtypes of colon cancer. Previous studies suggest that BRAF -mutant serrated cancers frequently exhibit Microsatellite Instability (MSI) and elevated levels of WNT signaling. The loss of tumor-suppressor Smad4 in oncogenic BRAF-V600E mous...
Gespeichert in:
Veröffentlicht in: | Oncogene 2021-10, Vol.40 (41), p.6034-6048 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6048 |
---|---|
container_issue | 41 |
container_start_page | 6034 |
container_title | Oncogene |
container_volume | 40 |
creator | Tong, Kevin Kothari, Om A. Haro, Katherine S. Panda, Anshuman Bandari, Manisha M. Carrick, Jillian N. Hur, Joseph J. Zhang, Lanjing Chan, Chang S. Xing, Jinchuan Gatza, Michael L. Ganesan, Shridar Verzi, Michael P. |
description | BRAF-driven colorectal cancer is among the poorest prognosis subtypes of colon cancer. Previous studies suggest that
BRAF
-mutant serrated cancers frequently exhibit Microsatellite Instability (MSI) and elevated levels of WNT signaling. The loss of tumor-suppressor
Smad4
in oncogenic
BRAF-V600E
mouse models promotes rapid serrated tumor development and progression, and
SMAD4
mutations co-occur in human patient tumors with
BRAF-V600E
mutations. This study assesses the role of SMAD4 in early-stage serrated tumorigenesis.
SMAD4
loss promotes microsatellite stable (MSS) serrated tumors in an oncogenic
BRAF-V600E
context, providing a model for MSS serrated cancers. Inactivation of
Msh2
in these mice accelerated tumor formation, and whole-exome sequencing of both MSS and MSI serrated tumors derived from these mouse models revealed that all serrated tumors developed oncogenic WNT mutations, predominantly in the WNT-effector gene
Ctnnb1
(β-catenin). Mouse models mimicking the oncogenic β-catenin mutation show that the combination of three oncogenic mutations (
Ctnnb1, Braf
, and
Smad4
) are critical to drive rapid serrated dysplasia formation. Re-analysis of human tumor data reveals
BRAF-V600E
mutations co-occur with oncogenic mutations in both WNT and SMAD4/TGFβ pathways. These findings identify SMAD4 as a critical factor in early-stage serrated cancers and helps broaden the knowledge of this rare but aggressive subset of colorectal cancer. |
doi_str_mv | 10.1038/s41388-021-01997-x |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8559887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A678996999</galeid><sourcerecordid>A678996999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-2016e8be156862c9fcdc4a997e9b1a47190fa69b829cd55e19734dd74d7111783</originalsourceid><addsrcrecordid>eNp9kV9rFDEUxYModq1-AR9kwOfU3PzPi7C2WxVaBG19DdlMZk3ZSdZkRuq3N7q1tSAlD4Hccw7n5ofQSyBHQJh-UzkwrTGhgAkYo_D1I7QAriQWwvDHaEGMINhQRg_Qs1qvCCHKEPoUHTDOBQPKF2j15Xx5wrtYO1_iFL3bdjF1dd7tSqg15tTloXv3eXmKv0pCVl0Npbgp9N00j7nETUihxvocPRnctoYXN_chujxdXRx_wGef3n88Xp5hLzhMmBKQQa8DCKkl9WbwveeuNQ9mDY4rMGRw0qw1Nb4XIoBRjPe94r0CAKXZIXq7z93N6zH0PqSpuK3dlTi68tNmF-39SYrf7Cb_sLr9iNaqBby-CSj5-xzqZK_yXFLrbKnQYATjEu5UG7cNNqYhtzA_xurtUiptjDTGNNXRf1Tt9GGMPqcwxPZ-z0D3Bl9yrSUMt8WB2N9E7Z6obUTtH6L2uple_bvyreUvwiZge0Fto7QJ5W6lB2J_AQ63qiA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581953461</pqid></control><display><type>article</type><title>SMAD4 is critical in suppression of BRAF-V600E serrated tumorigenesis</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Tong, Kevin ; Kothari, Om A. ; Haro, Katherine S. ; Panda, Anshuman ; Bandari, Manisha M. ; Carrick, Jillian N. ; Hur, Joseph J. ; Zhang, Lanjing ; Chan, Chang S. ; Xing, Jinchuan ; Gatza, Michael L. ; Ganesan, Shridar ; Verzi, Michael P.</creator><creatorcontrib>Tong, Kevin ; Kothari, Om A. ; Haro, Katherine S. ; Panda, Anshuman ; Bandari, Manisha M. ; Carrick, Jillian N. ; Hur, Joseph J. ; Zhang, Lanjing ; Chan, Chang S. ; Xing, Jinchuan ; Gatza, Michael L. ; Ganesan, Shridar ; Verzi, Michael P.</creatorcontrib><description>BRAF-driven colorectal cancer is among the poorest prognosis subtypes of colon cancer. Previous studies suggest that
BRAF
-mutant serrated cancers frequently exhibit Microsatellite Instability (MSI) and elevated levels of WNT signaling. The loss of tumor-suppressor
Smad4
in oncogenic
BRAF-V600E
mouse models promotes rapid serrated tumor development and progression, and
SMAD4
mutations co-occur in human patient tumors with
BRAF-V600E
mutations. This study assesses the role of SMAD4 in early-stage serrated tumorigenesis.
SMAD4
loss promotes microsatellite stable (MSS) serrated tumors in an oncogenic
BRAF-V600E
context, providing a model for MSS serrated cancers. Inactivation of
Msh2
in these mice accelerated tumor formation, and whole-exome sequencing of both MSS and MSI serrated tumors derived from these mouse models revealed that all serrated tumors developed oncogenic WNT mutations, predominantly in the WNT-effector gene
Ctnnb1
(β-catenin). Mouse models mimicking the oncogenic β-catenin mutation show that the combination of three oncogenic mutations (
Ctnnb1, Braf
, and
Smad4
) are critical to drive rapid serrated dysplasia formation. Re-analysis of human tumor data reveals
BRAF-V600E
mutations co-occur with oncogenic mutations in both WNT and SMAD4/TGFβ pathways. These findings identify SMAD4 as a critical factor in early-stage serrated cancers and helps broaden the knowledge of this rare but aggressive subset of colorectal cancer.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/s41388-021-01997-x</identifier><identifier>PMID: 34453124</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/51 ; 38/77 ; 45/23 ; 631/67/68 ; 631/67/70 ; 64/60 ; Animal models ; Animals ; Apoptosis ; Cancer ; Carcinogenesis ; Cell Biology ; Colon cancer ; Colorectal cancer ; Colorectal carcinoma ; Colorectal Neoplasms - metabolism ; Colorectal Neoplasms - pathology ; Development and progression ; Disease Models, Animal ; Dysplasia ; Gene mutations ; Genetic aspects ; Health aspects ; Human Genetics ; Humans ; Internal Medicine ; Medicine ; Medicine & Public Health ; Mice ; Microsatellite instability ; Mimicry ; MSH2 protein ; Mutation ; Oncology ; Oncology, Experimental ; Proto-Oncogene Proteins B-raf - metabolism ; Smad proteins ; Smad4 protein ; Smad4 Protein - metabolism ; Tumorigenesis ; Tumors ; Wnt protein ; β-Catenin</subject><ispartof>Oncogene, 2021-10, Vol.40 (41), p.6034-6048</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-2016e8be156862c9fcdc4a997e9b1a47190fa69b829cd55e19734dd74d7111783</citedby><cites>FETCH-LOGICAL-c541t-2016e8be156862c9fcdc4a997e9b1a47190fa69b829cd55e19734dd74d7111783</cites><orcidid>0000-0001-9897-4759 ; 0000-0003-4082-4330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34453124$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tong, Kevin</creatorcontrib><creatorcontrib>Kothari, Om A.</creatorcontrib><creatorcontrib>Haro, Katherine S.</creatorcontrib><creatorcontrib>Panda, Anshuman</creatorcontrib><creatorcontrib>Bandari, Manisha M.</creatorcontrib><creatorcontrib>Carrick, Jillian N.</creatorcontrib><creatorcontrib>Hur, Joseph J.</creatorcontrib><creatorcontrib>Zhang, Lanjing</creatorcontrib><creatorcontrib>Chan, Chang S.</creatorcontrib><creatorcontrib>Xing, Jinchuan</creatorcontrib><creatorcontrib>Gatza, Michael L.</creatorcontrib><creatorcontrib>Ganesan, Shridar</creatorcontrib><creatorcontrib>Verzi, Michael P.</creatorcontrib><title>SMAD4 is critical in suppression of BRAF-V600E serrated tumorigenesis</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>BRAF-driven colorectal cancer is among the poorest prognosis subtypes of colon cancer. Previous studies suggest that
BRAF
-mutant serrated cancers frequently exhibit Microsatellite Instability (MSI) and elevated levels of WNT signaling. The loss of tumor-suppressor
Smad4
in oncogenic
BRAF-V600E
mouse models promotes rapid serrated tumor development and progression, and
SMAD4
mutations co-occur in human patient tumors with
BRAF-V600E
mutations. This study assesses the role of SMAD4 in early-stage serrated tumorigenesis.
SMAD4
loss promotes microsatellite stable (MSS) serrated tumors in an oncogenic
BRAF-V600E
context, providing a model for MSS serrated cancers. Inactivation of
Msh2
in these mice accelerated tumor formation, and whole-exome sequencing of both MSS and MSI serrated tumors derived from these mouse models revealed that all serrated tumors developed oncogenic WNT mutations, predominantly in the WNT-effector gene
Ctnnb1
(β-catenin). Mouse models mimicking the oncogenic β-catenin mutation show that the combination of three oncogenic mutations (
Ctnnb1, Braf
, and
Smad4
) are critical to drive rapid serrated dysplasia formation. Re-analysis of human tumor data reveals
BRAF-V600E
mutations co-occur with oncogenic mutations in both WNT and SMAD4/TGFβ pathways. These findings identify SMAD4 as a critical factor in early-stage serrated cancers and helps broaden the knowledge of this rare but aggressive subset of colorectal cancer.</description><subject>13/51</subject><subject>38/77</subject><subject>45/23</subject><subject>631/67/68</subject><subject>631/67/70</subject><subject>64/60</subject><subject>Animal models</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Cancer</subject><subject>Carcinogenesis</subject><subject>Cell Biology</subject><subject>Colon cancer</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Colorectal Neoplasms - metabolism</subject><subject>Colorectal Neoplasms - pathology</subject><subject>Development and progression</subject><subject>Disease Models, Animal</subject><subject>Dysplasia</subject><subject>Gene mutations</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mice</subject><subject>Microsatellite instability</subject><subject>Mimicry</subject><subject>MSH2 protein</subject><subject>Mutation</subject><subject>Oncology</subject><subject>Oncology, Experimental</subject><subject>Proto-Oncogene Proteins B-raf - metabolism</subject><subject>Smad proteins</subject><subject>Smad4 protein</subject><subject>Smad4 Protein - metabolism</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><subject>Wnt protein</subject><subject>β-Catenin</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kV9rFDEUxYModq1-AR9kwOfU3PzPi7C2WxVaBG19DdlMZk3ZSdZkRuq3N7q1tSAlD4Hccw7n5ofQSyBHQJh-UzkwrTGhgAkYo_D1I7QAriQWwvDHaEGMINhQRg_Qs1qvCCHKEPoUHTDOBQPKF2j15Xx5wrtYO1_iFL3bdjF1dd7tSqg15tTloXv3eXmKv0pCVl0Npbgp9N00j7nETUihxvocPRnctoYXN_chujxdXRx_wGef3n88Xp5hLzhMmBKQQa8DCKkl9WbwveeuNQ9mDY4rMGRw0qw1Nb4XIoBRjPe94r0CAKXZIXq7z93N6zH0PqSpuK3dlTi68tNmF-39SYrf7Cb_sLr9iNaqBby-CSj5-xzqZK_yXFLrbKnQYATjEu5UG7cNNqYhtzA_xurtUiptjDTGNNXRf1Tt9GGMPqcwxPZ-z0D3Bl9yrSUMt8WB2N9E7Z6obUTtH6L2uple_bvyreUvwiZge0Fto7QJ5W6lB2J_AQ63qiA</recordid><startdate>20211014</startdate><enddate>20211014</enddate><creator>Tong, Kevin</creator><creator>Kothari, Om A.</creator><creator>Haro, Katherine S.</creator><creator>Panda, Anshuman</creator><creator>Bandari, Manisha M.</creator><creator>Carrick, Jillian N.</creator><creator>Hur, Joseph J.</creator><creator>Zhang, Lanjing</creator><creator>Chan, Chang S.</creator><creator>Xing, Jinchuan</creator><creator>Gatza, Michael L.</creator><creator>Ganesan, Shridar</creator><creator>Verzi, Michael P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9897-4759</orcidid><orcidid>https://orcid.org/0000-0003-4082-4330</orcidid></search><sort><creationdate>20211014</creationdate><title>SMAD4 is critical in suppression of BRAF-V600E serrated tumorigenesis</title><author>Tong, Kevin ; Kothari, Om A. ; Haro, Katherine S. ; Panda, Anshuman ; Bandari, Manisha M. ; Carrick, Jillian N. ; Hur, Joseph J. ; Zhang, Lanjing ; Chan, Chang S. ; Xing, Jinchuan ; Gatza, Michael L. ; Ganesan, Shridar ; Verzi, Michael P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-2016e8be156862c9fcdc4a997e9b1a47190fa69b829cd55e19734dd74d7111783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13/51</topic><topic>38/77</topic><topic>45/23</topic><topic>631/67/68</topic><topic>631/67/70</topic><topic>64/60</topic><topic>Animal models</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Cancer</topic><topic>Carcinogenesis</topic><topic>Cell Biology</topic><topic>Colon cancer</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Colorectal Neoplasms - metabolism</topic><topic>Colorectal Neoplasms - pathology</topic><topic>Development and progression</topic><topic>Disease Models, Animal</topic><topic>Dysplasia</topic><topic>Gene mutations</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mice</topic><topic>Microsatellite instability</topic><topic>Mimicry</topic><topic>MSH2 protein</topic><topic>Mutation</topic><topic>Oncology</topic><topic>Oncology, Experimental</topic><topic>Proto-Oncogene Proteins B-raf - metabolism</topic><topic>Smad proteins</topic><topic>Smad4 protein</topic><topic>Smad4 Protein - metabolism</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><topic>Wnt protein</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Kevin</creatorcontrib><creatorcontrib>Kothari, Om A.</creatorcontrib><creatorcontrib>Haro, Katherine S.</creatorcontrib><creatorcontrib>Panda, Anshuman</creatorcontrib><creatorcontrib>Bandari, Manisha M.</creatorcontrib><creatorcontrib>Carrick, Jillian N.</creatorcontrib><creatorcontrib>Hur, Joseph J.</creatorcontrib><creatorcontrib>Zhang, Lanjing</creatorcontrib><creatorcontrib>Chan, Chang S.</creatorcontrib><creatorcontrib>Xing, Jinchuan</creatorcontrib><creatorcontrib>Gatza, Michael L.</creatorcontrib><creatorcontrib>Ganesan, Shridar</creatorcontrib><creatorcontrib>Verzi, Michael P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Kevin</au><au>Kothari, Om A.</au><au>Haro, Katherine S.</au><au>Panda, Anshuman</au><au>Bandari, Manisha M.</au><au>Carrick, Jillian N.</au><au>Hur, Joseph J.</au><au>Zhang, Lanjing</au><au>Chan, Chang S.</au><au>Xing, Jinchuan</au><au>Gatza, Michael L.</au><au>Ganesan, Shridar</au><au>Verzi, Michael P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SMAD4 is critical in suppression of BRAF-V600E serrated tumorigenesis</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2021-10-14</date><risdate>2021</risdate><volume>40</volume><issue>41</issue><spage>6034</spage><epage>6048</epage><pages>6034-6048</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>BRAF-driven colorectal cancer is among the poorest prognosis subtypes of colon cancer. Previous studies suggest that
BRAF
-mutant serrated cancers frequently exhibit Microsatellite Instability (MSI) and elevated levels of WNT signaling. The loss of tumor-suppressor
Smad4
in oncogenic
BRAF-V600E
mouse models promotes rapid serrated tumor development and progression, and
SMAD4
mutations co-occur in human patient tumors with
BRAF-V600E
mutations. This study assesses the role of SMAD4 in early-stage serrated tumorigenesis.
SMAD4
loss promotes microsatellite stable (MSS) serrated tumors in an oncogenic
BRAF-V600E
context, providing a model for MSS serrated cancers. Inactivation of
Msh2
in these mice accelerated tumor formation, and whole-exome sequencing of both MSS and MSI serrated tumors derived from these mouse models revealed that all serrated tumors developed oncogenic WNT mutations, predominantly in the WNT-effector gene
Ctnnb1
(β-catenin). Mouse models mimicking the oncogenic β-catenin mutation show that the combination of three oncogenic mutations (
Ctnnb1, Braf
, and
Smad4
) are critical to drive rapid serrated dysplasia formation. Re-analysis of human tumor data reveals
BRAF-V600E
mutations co-occur with oncogenic mutations in both WNT and SMAD4/TGFβ pathways. These findings identify SMAD4 as a critical factor in early-stage serrated cancers and helps broaden the knowledge of this rare but aggressive subset of colorectal cancer.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34453124</pmid><doi>10.1038/s41388-021-01997-x</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9897-4759</orcidid><orcidid>https://orcid.org/0000-0003-4082-4330</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2021-10, Vol.40 (41), p.6034-6048 |
issn | 0950-9232 1476-5594 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8559887 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | 13/51 38/77 45/23 631/67/68 631/67/70 64/60 Animal models Animals Apoptosis Cancer Carcinogenesis Cell Biology Colon cancer Colorectal cancer Colorectal carcinoma Colorectal Neoplasms - metabolism Colorectal Neoplasms - pathology Development and progression Disease Models, Animal Dysplasia Gene mutations Genetic aspects Health aspects Human Genetics Humans Internal Medicine Medicine Medicine & Public Health Mice Microsatellite instability Mimicry MSH2 protein Mutation Oncology Oncology, Experimental Proto-Oncogene Proteins B-raf - metabolism Smad proteins Smad4 protein Smad4 Protein - metabolism Tumorigenesis Tumors Wnt protein β-Catenin |
title | SMAD4 is critical in suppression of BRAF-V600E serrated tumorigenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SMAD4%20is%20critical%20in%20suppression%20of%20BRAF-V600E%20serrated%20tumorigenesis&rft.jtitle=Oncogene&rft.au=Tong,%20Kevin&rft.date=2021-10-14&rft.volume=40&rft.issue=41&rft.spage=6034&rft.epage=6048&rft.pages=6034-6048&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/s41388-021-01997-x&rft_dat=%3Cgale_pubme%3EA678996999%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581953461&rft_id=info:pmid/34453124&rft_galeid=A678996999&rfr_iscdi=true |