Adaptive translational pausing is a hallmark of the cellular response to severe environmental stress
To survive, mammalian cells must adapt to environmental challenges. While the cellular response to mild stress has been widely studied, how cells respond to severe stress remains unclear. We show here that under severe hyperosmotic stress, cells enter a transient hibernation-like state in anticipati...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2021-10, Vol.81 (20), p.4191-4208.e8 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4208.e8 |
---|---|
container_issue | 20 |
container_start_page | 4191 |
container_title | Molecular cell |
container_volume | 81 |
creator | Jobava, Raul Mao, Yuanhui Guan, Bo-Jhih Hu, Di Krokowski, Dawid Chen, Chien-Wen Shu, Xin Erica Chukwurah, Evelyn Wu, Jing Gao, Zhaofeng Zagore, Leah L. Merrick, William C. Trifunovic, Aleksandra Hsieh, Andrew C. Valadkhan, Saba Zhang, Youwei Qi, Xin Jankowsky, Eckhard Topisirovic, Ivan Licatalosi, Donny D. Qian, Shu-Bing Hatzoglou, Maria |
description | To survive, mammalian cells must adapt to environmental challenges. While the cellular response to mild stress has been widely studied, how cells respond to severe stress remains unclear. We show here that under severe hyperosmotic stress, cells enter a transient hibernation-like state in anticipation of recovery. We demonstrate this adaptive pausing response (APR) is a coordinated cellular response that limits ATP supply and consumption through mitochondrial fragmentation and widespread pausing of mRNA translation. This pausing is accomplished by ribosome stalling at translation initiation codons, which keeps mRNAs poised to resume translation upon recovery. We further show that recovery from severe stress involves ISR (integrated stress response) signaling that permits cell cycle progression, resumption of growth, and reversal of mitochondria fragmentation. Our findings indicate that cells can respond to severe stress via a hibernation-like mechanism that preserves vital elements of cellular function under harsh environmental conditions.
[Display omitted]
•Cells exposed to extremely harsh environments preserve the ability to recover•Severe stress induces dramatic mitochondrial fragmentation•Severe stress induces a hibernation-like state entailing ribosome pausing•Exit from the hibernation-like state requires induction of ISR
Jobava et al. show that near-lethal environmental stress induces a hibernation-like state of severe mitochondrial fragmentation with 80S ribosomes stalled at the start codons of a select group of mRNAs. Induction of ISR during removal of stress reverses the hibernation-like state and promotes a return to homeostasis. |
doi_str_mv | 10.1016/j.molcel.2021.09.029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8559772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S109727652100798X</els_id><sourcerecordid>2584790595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-93727736cc0d3c14a2b21a5ae0209a30fdf6f816e7bcc4b18bd62fae42201463</originalsourceid><addsrcrecordid>eNp9UU2P1CAYJkbjfug_MIajl6lAKZSLyWazfiSbeNk7ofTtDiOFCrSJ_36ZzLjqxRMkPJ88CL2jpKGEio-HZo7egm8YYbQhqiFMvUCXlCi541Twl-c7k6K7QFc5HwihvOvVa3TRctGLlvJLNN6MZiluA1ySCdmb4mIwHi9mzS48YpexwXvj_WzSDxwnXPaAq6tfvUk4QV5iyJUccYYNEmAIm0sxzBBKlcmlQvIb9GoyPsPb83mNHj7fPdx-3d1___Lt9uZ-Z7loy061kknZCmvJ2FrKDRsYNZ0BwogyLZnGSUw9FSAHa_lA-2EUbDLAGavNRHuNPp1kl3WYYbQ1QjJeL8nV8L90NE7_-xLcXj_GTfddp6RkVeDDWSDFnyvkomeXj2VNgLhmzbqeS0U61VUoP0FtijknmJ5tKNHHffRBn_bRx300UbruU2nv_474TPo9yJ8OUP9pc5B0tg6ChdElsEWP0f3f4Qn-R6as</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584790595</pqid></control><display><type>article</type><title>Adaptive translational pausing is a hallmark of the cellular response to severe environmental stress</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Free Full-Text Journals in Chemistry</source><creator>Jobava, Raul ; Mao, Yuanhui ; Guan, Bo-Jhih ; Hu, Di ; Krokowski, Dawid ; Chen, Chien-Wen ; Shu, Xin Erica ; Chukwurah, Evelyn ; Wu, Jing ; Gao, Zhaofeng ; Zagore, Leah L. ; Merrick, William C. ; Trifunovic, Aleksandra ; Hsieh, Andrew C. ; Valadkhan, Saba ; Zhang, Youwei ; Qi, Xin ; Jankowsky, Eckhard ; Topisirovic, Ivan ; Licatalosi, Donny D. ; Qian, Shu-Bing ; Hatzoglou, Maria</creator><creatorcontrib>Jobava, Raul ; Mao, Yuanhui ; Guan, Bo-Jhih ; Hu, Di ; Krokowski, Dawid ; Chen, Chien-Wen ; Shu, Xin Erica ; Chukwurah, Evelyn ; Wu, Jing ; Gao, Zhaofeng ; Zagore, Leah L. ; Merrick, William C. ; Trifunovic, Aleksandra ; Hsieh, Andrew C. ; Valadkhan, Saba ; Zhang, Youwei ; Qi, Xin ; Jankowsky, Eckhard ; Topisirovic, Ivan ; Licatalosi, Donny D. ; Qian, Shu-Bing ; Hatzoglou, Maria</creatorcontrib><description>To survive, mammalian cells must adapt to environmental challenges. While the cellular response to mild stress has been widely studied, how cells respond to severe stress remains unclear. We show here that under severe hyperosmotic stress, cells enter a transient hibernation-like state in anticipation of recovery. We demonstrate this adaptive pausing response (APR) is a coordinated cellular response that limits ATP supply and consumption through mitochondrial fragmentation and widespread pausing of mRNA translation. This pausing is accomplished by ribosome stalling at translation initiation codons, which keeps mRNAs poised to resume translation upon recovery. We further show that recovery from severe stress involves ISR (integrated stress response) signaling that permits cell cycle progression, resumption of growth, and reversal of mitochondria fragmentation. Our findings indicate that cells can respond to severe stress via a hibernation-like mechanism that preserves vital elements of cellular function under harsh environmental conditions.
[Display omitted]
•Cells exposed to extremely harsh environments preserve the ability to recover•Severe stress induces dramatic mitochondrial fragmentation•Severe stress induces a hibernation-like state entailing ribosome pausing•Exit from the hibernation-like state requires induction of ISR
Jobava et al. show that near-lethal environmental stress induces a hibernation-like state of severe mitochondrial fragmentation with 80S ribosomes stalled at the start codons of a select group of mRNAs. Induction of ISR during removal of stress reverses the hibernation-like state and promotes a return to homeostasis.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2021.09.029</identifier><identifier>PMID: 34686314</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptation, Physiological ; Adenosine Triphosphate - metabolism ; Animals ; ATF4 ; Cell Proliferation ; Codon, Initiator ; Fibroblasts - metabolism ; Fibroblasts - pathology ; HEK293 Cells ; Humans ; hypertonic ; ISR ; Kinetics ; Mice ; mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondria - pathology ; Mitochondrial Proteins - biosynthesis ; Mitochondrial Proteins - genetics ; mTOR ; neMito mRNAs ; Osmotic Pressure ; Protein Biosynthesis ; ribosome stalling ; Ribosomes - genetics ; Ribosomes - metabolism ; Signal Transduction ; stress ; translation</subject><ispartof>Molecular cell, 2021-10, Vol.81 (20), p.4191-4208.e8</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-93727736cc0d3c14a2b21a5ae0209a30fdf6f816e7bcc4b18bd62fae42201463</citedby><cites>FETCH-LOGICAL-c463t-93727736cc0d3c14a2b21a5ae0209a30fdf6f816e7bcc4b18bd62fae42201463</cites><orcidid>0000-0002-5472-3517 ; 0000-0002-9706-7003 ; 0000-0002-1214-4058 ; 0000-0003-4047-7340 ; 0000-0003-3009-8128 ; 0000-0002-9578-3890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2021.09.029$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34686314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jobava, Raul</creatorcontrib><creatorcontrib>Mao, Yuanhui</creatorcontrib><creatorcontrib>Guan, Bo-Jhih</creatorcontrib><creatorcontrib>Hu, Di</creatorcontrib><creatorcontrib>Krokowski, Dawid</creatorcontrib><creatorcontrib>Chen, Chien-Wen</creatorcontrib><creatorcontrib>Shu, Xin Erica</creatorcontrib><creatorcontrib>Chukwurah, Evelyn</creatorcontrib><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Gao, Zhaofeng</creatorcontrib><creatorcontrib>Zagore, Leah L.</creatorcontrib><creatorcontrib>Merrick, William C.</creatorcontrib><creatorcontrib>Trifunovic, Aleksandra</creatorcontrib><creatorcontrib>Hsieh, Andrew C.</creatorcontrib><creatorcontrib>Valadkhan, Saba</creatorcontrib><creatorcontrib>Zhang, Youwei</creatorcontrib><creatorcontrib>Qi, Xin</creatorcontrib><creatorcontrib>Jankowsky, Eckhard</creatorcontrib><creatorcontrib>Topisirovic, Ivan</creatorcontrib><creatorcontrib>Licatalosi, Donny D.</creatorcontrib><creatorcontrib>Qian, Shu-Bing</creatorcontrib><creatorcontrib>Hatzoglou, Maria</creatorcontrib><title>Adaptive translational pausing is a hallmark of the cellular response to severe environmental stress</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>To survive, mammalian cells must adapt to environmental challenges. While the cellular response to mild stress has been widely studied, how cells respond to severe stress remains unclear. We show here that under severe hyperosmotic stress, cells enter a transient hibernation-like state in anticipation of recovery. We demonstrate this adaptive pausing response (APR) is a coordinated cellular response that limits ATP supply and consumption through mitochondrial fragmentation and widespread pausing of mRNA translation. This pausing is accomplished by ribosome stalling at translation initiation codons, which keeps mRNAs poised to resume translation upon recovery. We further show that recovery from severe stress involves ISR (integrated stress response) signaling that permits cell cycle progression, resumption of growth, and reversal of mitochondria fragmentation. Our findings indicate that cells can respond to severe stress via a hibernation-like mechanism that preserves vital elements of cellular function under harsh environmental conditions.
[Display omitted]
•Cells exposed to extremely harsh environments preserve the ability to recover•Severe stress induces dramatic mitochondrial fragmentation•Severe stress induces a hibernation-like state entailing ribosome pausing•Exit from the hibernation-like state requires induction of ISR
Jobava et al. show that near-lethal environmental stress induces a hibernation-like state of severe mitochondrial fragmentation with 80S ribosomes stalled at the start codons of a select group of mRNAs. Induction of ISR during removal of stress reverses the hibernation-like state and promotes a return to homeostasis.</description><subject>Adaptation, Physiological</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>ATF4</subject><subject>Cell Proliferation</subject><subject>Codon, Initiator</subject><subject>Fibroblasts - metabolism</subject><subject>Fibroblasts - pathology</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>hypertonic</subject><subject>ISR</subject><subject>Kinetics</subject><subject>Mice</subject><subject>mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Mitochondrial Proteins - biosynthesis</subject><subject>Mitochondrial Proteins - genetics</subject><subject>mTOR</subject><subject>neMito mRNAs</subject><subject>Osmotic Pressure</subject><subject>Protein Biosynthesis</subject><subject>ribosome stalling</subject><subject>Ribosomes - genetics</subject><subject>Ribosomes - metabolism</subject><subject>Signal Transduction</subject><subject>stress</subject><subject>translation</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU2P1CAYJkbjfug_MIajl6lAKZSLyWazfiSbeNk7ofTtDiOFCrSJ_36ZzLjqxRMkPJ88CL2jpKGEio-HZo7egm8YYbQhqiFMvUCXlCi541Twl-c7k6K7QFc5HwihvOvVa3TRctGLlvJLNN6MZiluA1ySCdmb4mIwHi9mzS48YpexwXvj_WzSDxwnXPaAq6tfvUk4QV5iyJUccYYNEmAIm0sxzBBKlcmlQvIb9GoyPsPb83mNHj7fPdx-3d1___Lt9uZ-Z7loy061kknZCmvJ2FrKDRsYNZ0BwogyLZnGSUw9FSAHa_lA-2EUbDLAGavNRHuNPp1kl3WYYbQ1QjJeL8nV8L90NE7_-xLcXj_GTfddp6RkVeDDWSDFnyvkomeXj2VNgLhmzbqeS0U61VUoP0FtijknmJ5tKNHHffRBn_bRx300UbruU2nv_474TPo9yJ8OUP9pc5B0tg6ChdElsEWP0f3f4Qn-R6as</recordid><startdate>20211021</startdate><enddate>20211021</enddate><creator>Jobava, Raul</creator><creator>Mao, Yuanhui</creator><creator>Guan, Bo-Jhih</creator><creator>Hu, Di</creator><creator>Krokowski, Dawid</creator><creator>Chen, Chien-Wen</creator><creator>Shu, Xin Erica</creator><creator>Chukwurah, Evelyn</creator><creator>Wu, Jing</creator><creator>Gao, Zhaofeng</creator><creator>Zagore, Leah L.</creator><creator>Merrick, William C.</creator><creator>Trifunovic, Aleksandra</creator><creator>Hsieh, Andrew C.</creator><creator>Valadkhan, Saba</creator><creator>Zhang, Youwei</creator><creator>Qi, Xin</creator><creator>Jankowsky, Eckhard</creator><creator>Topisirovic, Ivan</creator><creator>Licatalosi, Donny D.</creator><creator>Qian, Shu-Bing</creator><creator>Hatzoglou, Maria</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5472-3517</orcidid><orcidid>https://orcid.org/0000-0002-9706-7003</orcidid><orcidid>https://orcid.org/0000-0002-1214-4058</orcidid><orcidid>https://orcid.org/0000-0003-4047-7340</orcidid><orcidid>https://orcid.org/0000-0003-3009-8128</orcidid><orcidid>https://orcid.org/0000-0002-9578-3890</orcidid></search><sort><creationdate>20211021</creationdate><title>Adaptive translational pausing is a hallmark of the cellular response to severe environmental stress</title><author>Jobava, Raul ; Mao, Yuanhui ; Guan, Bo-Jhih ; Hu, Di ; Krokowski, Dawid ; Chen, Chien-Wen ; Shu, Xin Erica ; Chukwurah, Evelyn ; Wu, Jing ; Gao, Zhaofeng ; Zagore, Leah L. ; Merrick, William C. ; Trifunovic, Aleksandra ; Hsieh, Andrew C. ; Valadkhan, Saba ; Zhang, Youwei ; Qi, Xin ; Jankowsky, Eckhard ; Topisirovic, Ivan ; Licatalosi, Donny D. ; Qian, Shu-Bing ; Hatzoglou, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-93727736cc0d3c14a2b21a5ae0209a30fdf6f816e7bcc4b18bd62fae42201463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation, Physiological</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>ATF4</topic><topic>Cell Proliferation</topic><topic>Codon, Initiator</topic><topic>Fibroblasts - metabolism</topic><topic>Fibroblasts - pathology</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>hypertonic</topic><topic>ISR</topic><topic>Kinetics</topic><topic>Mice</topic><topic>mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Mitochondrial Proteins - biosynthesis</topic><topic>Mitochondrial Proteins - genetics</topic><topic>mTOR</topic><topic>neMito mRNAs</topic><topic>Osmotic Pressure</topic><topic>Protein Biosynthesis</topic><topic>ribosome stalling</topic><topic>Ribosomes - genetics</topic><topic>Ribosomes - metabolism</topic><topic>Signal Transduction</topic><topic>stress</topic><topic>translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jobava, Raul</creatorcontrib><creatorcontrib>Mao, Yuanhui</creatorcontrib><creatorcontrib>Guan, Bo-Jhih</creatorcontrib><creatorcontrib>Hu, Di</creatorcontrib><creatorcontrib>Krokowski, Dawid</creatorcontrib><creatorcontrib>Chen, Chien-Wen</creatorcontrib><creatorcontrib>Shu, Xin Erica</creatorcontrib><creatorcontrib>Chukwurah, Evelyn</creatorcontrib><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Gao, Zhaofeng</creatorcontrib><creatorcontrib>Zagore, Leah L.</creatorcontrib><creatorcontrib>Merrick, William C.</creatorcontrib><creatorcontrib>Trifunovic, Aleksandra</creatorcontrib><creatorcontrib>Hsieh, Andrew C.</creatorcontrib><creatorcontrib>Valadkhan, Saba</creatorcontrib><creatorcontrib>Zhang, Youwei</creatorcontrib><creatorcontrib>Qi, Xin</creatorcontrib><creatorcontrib>Jankowsky, Eckhard</creatorcontrib><creatorcontrib>Topisirovic, Ivan</creatorcontrib><creatorcontrib>Licatalosi, Donny D.</creatorcontrib><creatorcontrib>Qian, Shu-Bing</creatorcontrib><creatorcontrib>Hatzoglou, Maria</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jobava, Raul</au><au>Mao, Yuanhui</au><au>Guan, Bo-Jhih</au><au>Hu, Di</au><au>Krokowski, Dawid</au><au>Chen, Chien-Wen</au><au>Shu, Xin Erica</au><au>Chukwurah, Evelyn</au><au>Wu, Jing</au><au>Gao, Zhaofeng</au><au>Zagore, Leah L.</au><au>Merrick, William C.</au><au>Trifunovic, Aleksandra</au><au>Hsieh, Andrew C.</au><au>Valadkhan, Saba</au><au>Zhang, Youwei</au><au>Qi, Xin</au><au>Jankowsky, Eckhard</au><au>Topisirovic, Ivan</au><au>Licatalosi, Donny D.</au><au>Qian, Shu-Bing</au><au>Hatzoglou, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive translational pausing is a hallmark of the cellular response to severe environmental stress</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2021-10-21</date><risdate>2021</risdate><volume>81</volume><issue>20</issue><spage>4191</spage><epage>4208.e8</epage><pages>4191-4208.e8</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>To survive, mammalian cells must adapt to environmental challenges. While the cellular response to mild stress has been widely studied, how cells respond to severe stress remains unclear. We show here that under severe hyperosmotic stress, cells enter a transient hibernation-like state in anticipation of recovery. We demonstrate this adaptive pausing response (APR) is a coordinated cellular response that limits ATP supply and consumption through mitochondrial fragmentation and widespread pausing of mRNA translation. This pausing is accomplished by ribosome stalling at translation initiation codons, which keeps mRNAs poised to resume translation upon recovery. We further show that recovery from severe stress involves ISR (integrated stress response) signaling that permits cell cycle progression, resumption of growth, and reversal of mitochondria fragmentation. Our findings indicate that cells can respond to severe stress via a hibernation-like mechanism that preserves vital elements of cellular function under harsh environmental conditions.
[Display omitted]
•Cells exposed to extremely harsh environments preserve the ability to recover•Severe stress induces dramatic mitochondrial fragmentation•Severe stress induces a hibernation-like state entailing ribosome pausing•Exit from the hibernation-like state requires induction of ISR
Jobava et al. show that near-lethal environmental stress induces a hibernation-like state of severe mitochondrial fragmentation with 80S ribosomes stalled at the start codons of a select group of mRNAs. Induction of ISR during removal of stress reverses the hibernation-like state and promotes a return to homeostasis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34686314</pmid><doi>10.1016/j.molcel.2021.09.029</doi><orcidid>https://orcid.org/0000-0002-5472-3517</orcidid><orcidid>https://orcid.org/0000-0002-9706-7003</orcidid><orcidid>https://orcid.org/0000-0002-1214-4058</orcidid><orcidid>https://orcid.org/0000-0003-4047-7340</orcidid><orcidid>https://orcid.org/0000-0003-3009-8128</orcidid><orcidid>https://orcid.org/0000-0002-9578-3890</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2021-10, Vol.81 (20), p.4191-4208.e8 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8559772 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present); Free Full-Text Journals in Chemistry |
subjects | Adaptation, Physiological Adenosine Triphosphate - metabolism Animals ATF4 Cell Proliferation Codon, Initiator Fibroblasts - metabolism Fibroblasts - pathology HEK293 Cells Humans hypertonic ISR Kinetics Mice mitochondria Mitochondria - genetics Mitochondria - metabolism Mitochondria - pathology Mitochondrial Proteins - biosynthesis Mitochondrial Proteins - genetics mTOR neMito mRNAs Osmotic Pressure Protein Biosynthesis ribosome stalling Ribosomes - genetics Ribosomes - metabolism Signal Transduction stress translation |
title | Adaptive translational pausing is a hallmark of the cellular response to severe environmental stress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A33%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20translational%20pausing%20is%20a%20hallmark%20of%20the%20cellular%20response%20to%20severe%20environmental%20stress&rft.jtitle=Molecular%20cell&rft.au=Jobava,%20Raul&rft.date=2021-10-21&rft.volume=81&rft.issue=20&rft.spage=4191&rft.epage=4208.e8&rft.pages=4191-4208.e8&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2021.09.029&rft_dat=%3Cproquest_pubme%3E2584790595%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584790595&rft_id=info:pmid/34686314&rft_els_id=S109727652100798X&rfr_iscdi=true |