Adaptive translational pausing is a hallmark of the cellular response to severe environmental stress

To survive, mammalian cells must adapt to environmental challenges. While the cellular response to mild stress has been widely studied, how cells respond to severe stress remains unclear. We show here that under severe hyperosmotic stress, cells enter a transient hibernation-like state in anticipati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2021-10, Vol.81 (20), p.4191-4208.e8
Hauptverfasser: Jobava, Raul, Mao, Yuanhui, Guan, Bo-Jhih, Hu, Di, Krokowski, Dawid, Chen, Chien-Wen, Shu, Xin Erica, Chukwurah, Evelyn, Wu, Jing, Gao, Zhaofeng, Zagore, Leah L., Merrick, William C., Trifunovic, Aleksandra, Hsieh, Andrew C., Valadkhan, Saba, Zhang, Youwei, Qi, Xin, Jankowsky, Eckhard, Topisirovic, Ivan, Licatalosi, Donny D., Qian, Shu-Bing, Hatzoglou, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4208.e8
container_issue 20
container_start_page 4191
container_title Molecular cell
container_volume 81
creator Jobava, Raul
Mao, Yuanhui
Guan, Bo-Jhih
Hu, Di
Krokowski, Dawid
Chen, Chien-Wen
Shu, Xin Erica
Chukwurah, Evelyn
Wu, Jing
Gao, Zhaofeng
Zagore, Leah L.
Merrick, William C.
Trifunovic, Aleksandra
Hsieh, Andrew C.
Valadkhan, Saba
Zhang, Youwei
Qi, Xin
Jankowsky, Eckhard
Topisirovic, Ivan
Licatalosi, Donny D.
Qian, Shu-Bing
Hatzoglou, Maria
description To survive, mammalian cells must adapt to environmental challenges. While the cellular response to mild stress has been widely studied, how cells respond to severe stress remains unclear. We show here that under severe hyperosmotic stress, cells enter a transient hibernation-like state in anticipation of recovery. We demonstrate this adaptive pausing response (APR) is a coordinated cellular response that limits ATP supply and consumption through mitochondrial fragmentation and widespread pausing of mRNA translation. This pausing is accomplished by ribosome stalling at translation initiation codons, which keeps mRNAs poised to resume translation upon recovery. We further show that recovery from severe stress involves ISR (integrated stress response) signaling that permits cell cycle progression, resumption of growth, and reversal of mitochondria fragmentation. Our findings indicate that cells can respond to severe stress via a hibernation-like mechanism that preserves vital elements of cellular function under harsh environmental conditions. [Display omitted] •Cells exposed to extremely harsh environments preserve the ability to recover•Severe stress induces dramatic mitochondrial fragmentation•Severe stress induces a hibernation-like state entailing ribosome pausing•Exit from the hibernation-like state requires induction of ISR Jobava et al. show that near-lethal environmental stress induces a hibernation-like state of severe mitochondrial fragmentation with 80S ribosomes stalled at the start codons of a select group of mRNAs. Induction of ISR during removal of stress reverses the hibernation-like state and promotes a return to homeostasis.
doi_str_mv 10.1016/j.molcel.2021.09.029
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8559772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S109727652100798X</els_id><sourcerecordid>2584790595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-93727736cc0d3c14a2b21a5ae0209a30fdf6f816e7bcc4b18bd62fae42201463</originalsourceid><addsrcrecordid>eNp9UU2P1CAYJkbjfug_MIajl6lAKZSLyWazfiSbeNk7ofTtDiOFCrSJ_36ZzLjqxRMkPJ88CL2jpKGEio-HZo7egm8YYbQhqiFMvUCXlCi541Twl-c7k6K7QFc5HwihvOvVa3TRctGLlvJLNN6MZiluA1ySCdmb4mIwHi9mzS48YpexwXvj_WzSDxwnXPaAq6tfvUk4QV5iyJUccYYNEmAIm0sxzBBKlcmlQvIb9GoyPsPb83mNHj7fPdx-3d1___Lt9uZ-Z7loy061kknZCmvJ2FrKDRsYNZ0BwogyLZnGSUw9FSAHa_lA-2EUbDLAGavNRHuNPp1kl3WYYbQ1QjJeL8nV8L90NE7_-xLcXj_GTfddp6RkVeDDWSDFnyvkomeXj2VNgLhmzbqeS0U61VUoP0FtijknmJ5tKNHHffRBn_bRx300UbruU2nv_474TPo9yJ8OUP9pc5B0tg6ChdElsEWP0f3f4Qn-R6as</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584790595</pqid></control><display><type>article</type><title>Adaptive translational pausing is a hallmark of the cellular response to severe environmental stress</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Free Full-Text Journals in Chemistry</source><creator>Jobava, Raul ; Mao, Yuanhui ; Guan, Bo-Jhih ; Hu, Di ; Krokowski, Dawid ; Chen, Chien-Wen ; Shu, Xin Erica ; Chukwurah, Evelyn ; Wu, Jing ; Gao, Zhaofeng ; Zagore, Leah L. ; Merrick, William C. ; Trifunovic, Aleksandra ; Hsieh, Andrew C. ; Valadkhan, Saba ; Zhang, Youwei ; Qi, Xin ; Jankowsky, Eckhard ; Topisirovic, Ivan ; Licatalosi, Donny D. ; Qian, Shu-Bing ; Hatzoglou, Maria</creator><creatorcontrib>Jobava, Raul ; Mao, Yuanhui ; Guan, Bo-Jhih ; Hu, Di ; Krokowski, Dawid ; Chen, Chien-Wen ; Shu, Xin Erica ; Chukwurah, Evelyn ; Wu, Jing ; Gao, Zhaofeng ; Zagore, Leah L. ; Merrick, William C. ; Trifunovic, Aleksandra ; Hsieh, Andrew C. ; Valadkhan, Saba ; Zhang, Youwei ; Qi, Xin ; Jankowsky, Eckhard ; Topisirovic, Ivan ; Licatalosi, Donny D. ; Qian, Shu-Bing ; Hatzoglou, Maria</creatorcontrib><description>To survive, mammalian cells must adapt to environmental challenges. While the cellular response to mild stress has been widely studied, how cells respond to severe stress remains unclear. We show here that under severe hyperosmotic stress, cells enter a transient hibernation-like state in anticipation of recovery. We demonstrate this adaptive pausing response (APR) is a coordinated cellular response that limits ATP supply and consumption through mitochondrial fragmentation and widespread pausing of mRNA translation. This pausing is accomplished by ribosome stalling at translation initiation codons, which keeps mRNAs poised to resume translation upon recovery. We further show that recovery from severe stress involves ISR (integrated stress response) signaling that permits cell cycle progression, resumption of growth, and reversal of mitochondria fragmentation. Our findings indicate that cells can respond to severe stress via a hibernation-like mechanism that preserves vital elements of cellular function under harsh environmental conditions. [Display omitted] •Cells exposed to extremely harsh environments preserve the ability to recover•Severe stress induces dramatic mitochondrial fragmentation•Severe stress induces a hibernation-like state entailing ribosome pausing•Exit from the hibernation-like state requires induction of ISR Jobava et al. show that near-lethal environmental stress induces a hibernation-like state of severe mitochondrial fragmentation with 80S ribosomes stalled at the start codons of a select group of mRNAs. Induction of ISR during removal of stress reverses the hibernation-like state and promotes a return to homeostasis.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2021.09.029</identifier><identifier>PMID: 34686314</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptation, Physiological ; Adenosine Triphosphate - metabolism ; Animals ; ATF4 ; Cell Proliferation ; Codon, Initiator ; Fibroblasts - metabolism ; Fibroblasts - pathology ; HEK293 Cells ; Humans ; hypertonic ; ISR ; Kinetics ; Mice ; mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondria - pathology ; Mitochondrial Proteins - biosynthesis ; Mitochondrial Proteins - genetics ; mTOR ; neMito mRNAs ; Osmotic Pressure ; Protein Biosynthesis ; ribosome stalling ; Ribosomes - genetics ; Ribosomes - metabolism ; Signal Transduction ; stress ; translation</subject><ispartof>Molecular cell, 2021-10, Vol.81 (20), p.4191-4208.e8</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-93727736cc0d3c14a2b21a5ae0209a30fdf6f816e7bcc4b18bd62fae42201463</citedby><cites>FETCH-LOGICAL-c463t-93727736cc0d3c14a2b21a5ae0209a30fdf6f816e7bcc4b18bd62fae42201463</cites><orcidid>0000-0002-5472-3517 ; 0000-0002-9706-7003 ; 0000-0002-1214-4058 ; 0000-0003-4047-7340 ; 0000-0003-3009-8128 ; 0000-0002-9578-3890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2021.09.029$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34686314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jobava, Raul</creatorcontrib><creatorcontrib>Mao, Yuanhui</creatorcontrib><creatorcontrib>Guan, Bo-Jhih</creatorcontrib><creatorcontrib>Hu, Di</creatorcontrib><creatorcontrib>Krokowski, Dawid</creatorcontrib><creatorcontrib>Chen, Chien-Wen</creatorcontrib><creatorcontrib>Shu, Xin Erica</creatorcontrib><creatorcontrib>Chukwurah, Evelyn</creatorcontrib><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Gao, Zhaofeng</creatorcontrib><creatorcontrib>Zagore, Leah L.</creatorcontrib><creatorcontrib>Merrick, William C.</creatorcontrib><creatorcontrib>Trifunovic, Aleksandra</creatorcontrib><creatorcontrib>Hsieh, Andrew C.</creatorcontrib><creatorcontrib>Valadkhan, Saba</creatorcontrib><creatorcontrib>Zhang, Youwei</creatorcontrib><creatorcontrib>Qi, Xin</creatorcontrib><creatorcontrib>Jankowsky, Eckhard</creatorcontrib><creatorcontrib>Topisirovic, Ivan</creatorcontrib><creatorcontrib>Licatalosi, Donny D.</creatorcontrib><creatorcontrib>Qian, Shu-Bing</creatorcontrib><creatorcontrib>Hatzoglou, Maria</creatorcontrib><title>Adaptive translational pausing is a hallmark of the cellular response to severe environmental stress</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>To survive, mammalian cells must adapt to environmental challenges. While the cellular response to mild stress has been widely studied, how cells respond to severe stress remains unclear. We show here that under severe hyperosmotic stress, cells enter a transient hibernation-like state in anticipation of recovery. We demonstrate this adaptive pausing response (APR) is a coordinated cellular response that limits ATP supply and consumption through mitochondrial fragmentation and widespread pausing of mRNA translation. This pausing is accomplished by ribosome stalling at translation initiation codons, which keeps mRNAs poised to resume translation upon recovery. We further show that recovery from severe stress involves ISR (integrated stress response) signaling that permits cell cycle progression, resumption of growth, and reversal of mitochondria fragmentation. Our findings indicate that cells can respond to severe stress via a hibernation-like mechanism that preserves vital elements of cellular function under harsh environmental conditions. [Display omitted] •Cells exposed to extremely harsh environments preserve the ability to recover•Severe stress induces dramatic mitochondrial fragmentation•Severe stress induces a hibernation-like state entailing ribosome pausing•Exit from the hibernation-like state requires induction of ISR Jobava et al. show that near-lethal environmental stress induces a hibernation-like state of severe mitochondrial fragmentation with 80S ribosomes stalled at the start codons of a select group of mRNAs. Induction of ISR during removal of stress reverses the hibernation-like state and promotes a return to homeostasis.</description><subject>Adaptation, Physiological</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>ATF4</subject><subject>Cell Proliferation</subject><subject>Codon, Initiator</subject><subject>Fibroblasts - metabolism</subject><subject>Fibroblasts - pathology</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>hypertonic</subject><subject>ISR</subject><subject>Kinetics</subject><subject>Mice</subject><subject>mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Mitochondrial Proteins - biosynthesis</subject><subject>Mitochondrial Proteins - genetics</subject><subject>mTOR</subject><subject>neMito mRNAs</subject><subject>Osmotic Pressure</subject><subject>Protein Biosynthesis</subject><subject>ribosome stalling</subject><subject>Ribosomes - genetics</subject><subject>Ribosomes - metabolism</subject><subject>Signal Transduction</subject><subject>stress</subject><subject>translation</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU2P1CAYJkbjfug_MIajl6lAKZSLyWazfiSbeNk7ofTtDiOFCrSJ_36ZzLjqxRMkPJ88CL2jpKGEio-HZo7egm8YYbQhqiFMvUCXlCi541Twl-c7k6K7QFc5HwihvOvVa3TRctGLlvJLNN6MZiluA1ySCdmb4mIwHi9mzS48YpexwXvj_WzSDxwnXPaAq6tfvUk4QV5iyJUccYYNEmAIm0sxzBBKlcmlQvIb9GoyPsPb83mNHj7fPdx-3d1___Lt9uZ-Z7loy061kknZCmvJ2FrKDRsYNZ0BwogyLZnGSUw9FSAHa_lA-2EUbDLAGavNRHuNPp1kl3WYYbQ1QjJeL8nV8L90NE7_-xLcXj_GTfddp6RkVeDDWSDFnyvkomeXj2VNgLhmzbqeS0U61VUoP0FtijknmJ5tKNHHffRBn_bRx300UbruU2nv_474TPo9yJ8OUP9pc5B0tg6ChdElsEWP0f3f4Qn-R6as</recordid><startdate>20211021</startdate><enddate>20211021</enddate><creator>Jobava, Raul</creator><creator>Mao, Yuanhui</creator><creator>Guan, Bo-Jhih</creator><creator>Hu, Di</creator><creator>Krokowski, Dawid</creator><creator>Chen, Chien-Wen</creator><creator>Shu, Xin Erica</creator><creator>Chukwurah, Evelyn</creator><creator>Wu, Jing</creator><creator>Gao, Zhaofeng</creator><creator>Zagore, Leah L.</creator><creator>Merrick, William C.</creator><creator>Trifunovic, Aleksandra</creator><creator>Hsieh, Andrew C.</creator><creator>Valadkhan, Saba</creator><creator>Zhang, Youwei</creator><creator>Qi, Xin</creator><creator>Jankowsky, Eckhard</creator><creator>Topisirovic, Ivan</creator><creator>Licatalosi, Donny D.</creator><creator>Qian, Shu-Bing</creator><creator>Hatzoglou, Maria</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5472-3517</orcidid><orcidid>https://orcid.org/0000-0002-9706-7003</orcidid><orcidid>https://orcid.org/0000-0002-1214-4058</orcidid><orcidid>https://orcid.org/0000-0003-4047-7340</orcidid><orcidid>https://orcid.org/0000-0003-3009-8128</orcidid><orcidid>https://orcid.org/0000-0002-9578-3890</orcidid></search><sort><creationdate>20211021</creationdate><title>Adaptive translational pausing is a hallmark of the cellular response to severe environmental stress</title><author>Jobava, Raul ; Mao, Yuanhui ; Guan, Bo-Jhih ; Hu, Di ; Krokowski, Dawid ; Chen, Chien-Wen ; Shu, Xin Erica ; Chukwurah, Evelyn ; Wu, Jing ; Gao, Zhaofeng ; Zagore, Leah L. ; Merrick, William C. ; Trifunovic, Aleksandra ; Hsieh, Andrew C. ; Valadkhan, Saba ; Zhang, Youwei ; Qi, Xin ; Jankowsky, Eckhard ; Topisirovic, Ivan ; Licatalosi, Donny D. ; Qian, Shu-Bing ; Hatzoglou, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-93727736cc0d3c14a2b21a5ae0209a30fdf6f816e7bcc4b18bd62fae42201463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation, Physiological</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>ATF4</topic><topic>Cell Proliferation</topic><topic>Codon, Initiator</topic><topic>Fibroblasts - metabolism</topic><topic>Fibroblasts - pathology</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>hypertonic</topic><topic>ISR</topic><topic>Kinetics</topic><topic>Mice</topic><topic>mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Mitochondrial Proteins - biosynthesis</topic><topic>Mitochondrial Proteins - genetics</topic><topic>mTOR</topic><topic>neMito mRNAs</topic><topic>Osmotic Pressure</topic><topic>Protein Biosynthesis</topic><topic>ribosome stalling</topic><topic>Ribosomes - genetics</topic><topic>Ribosomes - metabolism</topic><topic>Signal Transduction</topic><topic>stress</topic><topic>translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jobava, Raul</creatorcontrib><creatorcontrib>Mao, Yuanhui</creatorcontrib><creatorcontrib>Guan, Bo-Jhih</creatorcontrib><creatorcontrib>Hu, Di</creatorcontrib><creatorcontrib>Krokowski, Dawid</creatorcontrib><creatorcontrib>Chen, Chien-Wen</creatorcontrib><creatorcontrib>Shu, Xin Erica</creatorcontrib><creatorcontrib>Chukwurah, Evelyn</creatorcontrib><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Gao, Zhaofeng</creatorcontrib><creatorcontrib>Zagore, Leah L.</creatorcontrib><creatorcontrib>Merrick, William C.</creatorcontrib><creatorcontrib>Trifunovic, Aleksandra</creatorcontrib><creatorcontrib>Hsieh, Andrew C.</creatorcontrib><creatorcontrib>Valadkhan, Saba</creatorcontrib><creatorcontrib>Zhang, Youwei</creatorcontrib><creatorcontrib>Qi, Xin</creatorcontrib><creatorcontrib>Jankowsky, Eckhard</creatorcontrib><creatorcontrib>Topisirovic, Ivan</creatorcontrib><creatorcontrib>Licatalosi, Donny D.</creatorcontrib><creatorcontrib>Qian, Shu-Bing</creatorcontrib><creatorcontrib>Hatzoglou, Maria</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jobava, Raul</au><au>Mao, Yuanhui</au><au>Guan, Bo-Jhih</au><au>Hu, Di</au><au>Krokowski, Dawid</au><au>Chen, Chien-Wen</au><au>Shu, Xin Erica</au><au>Chukwurah, Evelyn</au><au>Wu, Jing</au><au>Gao, Zhaofeng</au><au>Zagore, Leah L.</au><au>Merrick, William C.</au><au>Trifunovic, Aleksandra</au><au>Hsieh, Andrew C.</au><au>Valadkhan, Saba</au><au>Zhang, Youwei</au><au>Qi, Xin</au><au>Jankowsky, Eckhard</au><au>Topisirovic, Ivan</au><au>Licatalosi, Donny D.</au><au>Qian, Shu-Bing</au><au>Hatzoglou, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive translational pausing is a hallmark of the cellular response to severe environmental stress</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2021-10-21</date><risdate>2021</risdate><volume>81</volume><issue>20</issue><spage>4191</spage><epage>4208.e8</epage><pages>4191-4208.e8</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>To survive, mammalian cells must adapt to environmental challenges. While the cellular response to mild stress has been widely studied, how cells respond to severe stress remains unclear. We show here that under severe hyperosmotic stress, cells enter a transient hibernation-like state in anticipation of recovery. We demonstrate this adaptive pausing response (APR) is a coordinated cellular response that limits ATP supply and consumption through mitochondrial fragmentation and widespread pausing of mRNA translation. This pausing is accomplished by ribosome stalling at translation initiation codons, which keeps mRNAs poised to resume translation upon recovery. We further show that recovery from severe stress involves ISR (integrated stress response) signaling that permits cell cycle progression, resumption of growth, and reversal of mitochondria fragmentation. Our findings indicate that cells can respond to severe stress via a hibernation-like mechanism that preserves vital elements of cellular function under harsh environmental conditions. [Display omitted] •Cells exposed to extremely harsh environments preserve the ability to recover•Severe stress induces dramatic mitochondrial fragmentation•Severe stress induces a hibernation-like state entailing ribosome pausing•Exit from the hibernation-like state requires induction of ISR Jobava et al. show that near-lethal environmental stress induces a hibernation-like state of severe mitochondrial fragmentation with 80S ribosomes stalled at the start codons of a select group of mRNAs. Induction of ISR during removal of stress reverses the hibernation-like state and promotes a return to homeostasis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34686314</pmid><doi>10.1016/j.molcel.2021.09.029</doi><orcidid>https://orcid.org/0000-0002-5472-3517</orcidid><orcidid>https://orcid.org/0000-0002-9706-7003</orcidid><orcidid>https://orcid.org/0000-0002-1214-4058</orcidid><orcidid>https://orcid.org/0000-0003-4047-7340</orcidid><orcidid>https://orcid.org/0000-0003-3009-8128</orcidid><orcidid>https://orcid.org/0000-0002-9578-3890</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2021-10, Vol.81 (20), p.4191-4208.e8
issn 1097-2765
1097-4164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8559772
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present); Free Full-Text Journals in Chemistry
subjects Adaptation, Physiological
Adenosine Triphosphate - metabolism
Animals
ATF4
Cell Proliferation
Codon, Initiator
Fibroblasts - metabolism
Fibroblasts - pathology
HEK293 Cells
Humans
hypertonic
ISR
Kinetics
Mice
mitochondria
Mitochondria - genetics
Mitochondria - metabolism
Mitochondria - pathology
Mitochondrial Proteins - biosynthesis
Mitochondrial Proteins - genetics
mTOR
neMito mRNAs
Osmotic Pressure
Protein Biosynthesis
ribosome stalling
Ribosomes - genetics
Ribosomes - metabolism
Signal Transduction
stress
translation
title Adaptive translational pausing is a hallmark of the cellular response to severe environmental stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A33%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20translational%20pausing%20is%20a%20hallmark%20of%20the%20cellular%20response%20to%20severe%20environmental%20stress&rft.jtitle=Molecular%20cell&rft.au=Jobava,%20Raul&rft.date=2021-10-21&rft.volume=81&rft.issue=20&rft.spage=4191&rft.epage=4208.e8&rft.pages=4191-4208.e8&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2021.09.029&rft_dat=%3Cproquest_pubme%3E2584790595%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584790595&rft_id=info:pmid/34686314&rft_els_id=S109727652100798X&rfr_iscdi=true