A look into retinal organoids: methods, analytical techniques, and applications

Inherited retinal diseases (IRDs) cause progressive loss of light-sensitive photoreceptors in the eye and can lead to blindness. Gene-based therapies for IRDs have shown remarkable progress in the past decade, but the vast majority of forms remain untreatable. In the era of personalised medicine, in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular and molecular life sciences : CMLS 2021-10, Vol.78 (19-20), p.6505-6532
Hauptverfasser: Afanasyeva, Tess A. V., Corral-Serrano, Julio C., Garanto, Alejandro, Roepman, Ronald, Cheetham, Michael E., Collin, Rob W. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6532
container_issue 19-20
container_start_page 6505
container_title Cellular and molecular life sciences : CMLS
container_volume 78
creator Afanasyeva, Tess A. V.
Corral-Serrano, Julio C.
Garanto, Alejandro
Roepman, Ronald
Cheetham, Michael E.
Collin, Rob W. J.
description Inherited retinal diseases (IRDs) cause progressive loss of light-sensitive photoreceptors in the eye and can lead to blindness. Gene-based therapies for IRDs have shown remarkable progress in the past decade, but the vast majority of forms remain untreatable. In the era of personalised medicine, induced pluripotent stem cells (iPSCs) emerge as a valuable system for cell replacement and to model IRD because they retain the specific patient genome and can differentiate into any adult cell type. Three-dimensional (3D) iPSCs-derived retina-like tissue called retinal organoid contains all major retina-specific cell types: amacrine, bipolar, horizontal, retinal ganglion cells, Müller glia, as well as rod and cone photoreceptors. Here, we describe the main applications of retinal organoids and provide a comprehensive overview of the state-of-art analysis methods that apply to this model system. Finally, we will discuss the outlook for improvements that would bring the cellular model a step closer to become an established system in research and treatment development of IRDs.
doi_str_mv 10.1007/s00018-021-03917-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8558279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563696675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-e3421ebb39eec6016b3c9cff6fb7d1ada204c78a95dd9d4c068f1c022c27b8573</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0EIg_4ARZRS2xYpKH8aLudRaRRlABSpNmAxM5y2-4Zhx57sD2R8vd4HoSQBStbvqduueoi9A7DRwwgPmUAwH0LBLdAJRYte4GOMSPQShD45eHOe_LjCJ3kfFfprif8NTqirCrA5TGaz5opxp-NDyU2yRUf9NTEtNAhepsvmpUry2jzeaOr8FC8qXJxZhn8r43bPdtGr9dTFYqPIb9Br0Y9Zff2cJ6i7zfX366-tLfzz1-vZretYYKV1lFGsBsGKp0zHDAfqJFmHPk4CIu11QSYEb2WnbXSMgO8H7EBQgwRQ98Jeoou977rzbBy1rhQkp7UOvmVTg8qaq_-VYJfqkW8V31XdyBkNfhwMEhxO0pRK5-NmyYdXNxkRTpOueRcdBV9_wy9i5tU97GleskpgIRKkT1lUsw5ufHxMxjUNi-1z0vVvNQuL8Vq0dnTMR5L_gRUAboHcpXCwqW_vf9j-xukEaHp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2589630090</pqid></control><display><type>article</type><title>A look into retinal organoids: methods, analytical techniques, and applications</title><source>MEDLINE</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Afanasyeva, Tess A. V. ; Corral-Serrano, Julio C. ; Garanto, Alejandro ; Roepman, Ronald ; Cheetham, Michael E. ; Collin, Rob W. J.</creator><creatorcontrib>Afanasyeva, Tess A. V. ; Corral-Serrano, Julio C. ; Garanto, Alejandro ; Roepman, Ronald ; Cheetham, Michael E. ; Collin, Rob W. J.</creatorcontrib><description>Inherited retinal diseases (IRDs) cause progressive loss of light-sensitive photoreceptors in the eye and can lead to blindness. Gene-based therapies for IRDs have shown remarkable progress in the past decade, but the vast majority of forms remain untreatable. In the era of personalised medicine, induced pluripotent stem cells (iPSCs) emerge as a valuable system for cell replacement and to model IRD because they retain the specific patient genome and can differentiate into any adult cell type. Three-dimensional (3D) iPSCs-derived retina-like tissue called retinal organoid contains all major retina-specific cell types: amacrine, bipolar, horizontal, retinal ganglion cells, Müller glia, as well as rod and cone photoreceptors. Here, we describe the main applications of retinal organoids and provide a comprehensive overview of the state-of-art analysis methods that apply to this model system. Finally, we will discuss the outlook for improvements that would bring the cellular model a step closer to become an established system in research and treatment development of IRDs.</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-021-03917-4</identifier><identifier>PMID: 34420069</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animals ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Blindness ; Cell Biology ; Cell differentiation ; Cell Differentiation - physiology ; Gene therapy ; Genomes ; Horizontal cells ; Humans ; Induced Pluripotent Stem Cells - physiology ; Life Sciences ; Mueller cells ; Neuroglia - physiology ; Organoids ; Organoids - physiology ; Photoreception ; Photoreceptors ; Pluripotency ; Precision medicine ; Retina ; Retina - physiology ; Retinal Diseases - physiopathology ; Retinal ganglion cells ; Retinal Rod Photoreceptor Cells - physiology ; Review ; Stem cells</subject><ispartof>Cellular and molecular life sciences : CMLS, 2021-10, Vol.78 (19-20), p.6505-6532</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-e3421ebb39eec6016b3c9cff6fb7d1ada204c78a95dd9d4c068f1c022c27b8573</citedby><cites>FETCH-LOGICAL-c474t-e3421ebb39eec6016b3c9cff6fb7d1ada204c78a95dd9d4c068f1c022c27b8573</cites><orcidid>0000-0001-6429-654X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8558279/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8558279/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34420069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Afanasyeva, Tess A. V.</creatorcontrib><creatorcontrib>Corral-Serrano, Julio C.</creatorcontrib><creatorcontrib>Garanto, Alejandro</creatorcontrib><creatorcontrib>Roepman, Ronald</creatorcontrib><creatorcontrib>Cheetham, Michael E.</creatorcontrib><creatorcontrib>Collin, Rob W. J.</creatorcontrib><title>A look into retinal organoids: methods, analytical techniques, and applications</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>Inherited retinal diseases (IRDs) cause progressive loss of light-sensitive photoreceptors in the eye and can lead to blindness. Gene-based therapies for IRDs have shown remarkable progress in the past decade, but the vast majority of forms remain untreatable. In the era of personalised medicine, induced pluripotent stem cells (iPSCs) emerge as a valuable system for cell replacement and to model IRD because they retain the specific patient genome and can differentiate into any adult cell type. Three-dimensional (3D) iPSCs-derived retina-like tissue called retinal organoid contains all major retina-specific cell types: amacrine, bipolar, horizontal, retinal ganglion cells, Müller glia, as well as rod and cone photoreceptors. Here, we describe the main applications of retinal organoids and provide a comprehensive overview of the state-of-art analysis methods that apply to this model system. Finally, we will discuss the outlook for improvements that would bring the cellular model a step closer to become an established system in research and treatment development of IRDs.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blindness</subject><subject>Cell Biology</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - physiology</subject><subject>Gene therapy</subject><subject>Genomes</subject><subject>Horizontal cells</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - physiology</subject><subject>Life Sciences</subject><subject>Mueller cells</subject><subject>Neuroglia - physiology</subject><subject>Organoids</subject><subject>Organoids - physiology</subject><subject>Photoreception</subject><subject>Photoreceptors</subject><subject>Pluripotency</subject><subject>Precision medicine</subject><subject>Retina</subject><subject>Retina - physiology</subject><subject>Retinal Diseases - physiopathology</subject><subject>Retinal ganglion cells</subject><subject>Retinal Rod Photoreceptor Cells - physiology</subject><subject>Review</subject><subject>Stem cells</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kctuFDEQRS0EIg_4ARZRS2xYpKH8aLudRaRRlABSpNmAxM5y2-4Zhx57sD2R8vd4HoSQBStbvqduueoi9A7DRwwgPmUAwH0LBLdAJRYte4GOMSPQShD45eHOe_LjCJ3kfFfprif8NTqirCrA5TGaz5opxp-NDyU2yRUf9NTEtNAhepsvmpUry2jzeaOr8FC8qXJxZhn8r43bPdtGr9dTFYqPIb9Br0Y9Zff2cJ6i7zfX366-tLfzz1-vZretYYKV1lFGsBsGKp0zHDAfqJFmHPk4CIu11QSYEb2WnbXSMgO8H7EBQgwRQ98Jeoou977rzbBy1rhQkp7UOvmVTg8qaq_-VYJfqkW8V31XdyBkNfhwMEhxO0pRK5-NmyYdXNxkRTpOueRcdBV9_wy9i5tU97GleskpgIRKkT1lUsw5ufHxMxjUNi-1z0vVvNQuL8Vq0dnTMR5L_gRUAboHcpXCwqW_vf9j-xukEaHp</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Afanasyeva, Tess A. V.</creator><creator>Corral-Serrano, Julio C.</creator><creator>Garanto, Alejandro</creator><creator>Roepman, Ronald</creator><creator>Cheetham, Michael E.</creator><creator>Collin, Rob W. J.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6429-654X</orcidid></search><sort><creationdate>20211001</creationdate><title>A look into retinal organoids: methods, analytical techniques, and applications</title><author>Afanasyeva, Tess A. V. ; Corral-Serrano, Julio C. ; Garanto, Alejandro ; Roepman, Ronald ; Cheetham, Michael E. ; Collin, Rob W. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-e3421ebb39eec6016b3c9cff6fb7d1ada204c78a95dd9d4c068f1c022c27b8573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blindness</topic><topic>Cell Biology</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - physiology</topic><topic>Gene therapy</topic><topic>Genomes</topic><topic>Horizontal cells</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - physiology</topic><topic>Life Sciences</topic><topic>Mueller cells</topic><topic>Neuroglia - physiology</topic><topic>Organoids</topic><topic>Organoids - physiology</topic><topic>Photoreception</topic><topic>Photoreceptors</topic><topic>Pluripotency</topic><topic>Precision medicine</topic><topic>Retina</topic><topic>Retina - physiology</topic><topic>Retinal Diseases - physiopathology</topic><topic>Retinal ganglion cells</topic><topic>Retinal Rod Photoreceptor Cells - physiology</topic><topic>Review</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afanasyeva, Tess A. V.</creatorcontrib><creatorcontrib>Corral-Serrano, Julio C.</creatorcontrib><creatorcontrib>Garanto, Alejandro</creatorcontrib><creatorcontrib>Roepman, Ronald</creatorcontrib><creatorcontrib>Cheetham, Michael E.</creatorcontrib><creatorcontrib>Collin, Rob W. J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afanasyeva, Tess A. V.</au><au>Corral-Serrano, Julio C.</au><au>Garanto, Alejandro</au><au>Roepman, Ronald</au><au>Cheetham, Michael E.</au><au>Collin, Rob W. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A look into retinal organoids: methods, analytical techniques, and applications</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>78</volume><issue>19-20</issue><spage>6505</spage><epage>6532</epage><pages>6505-6532</pages><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>Inherited retinal diseases (IRDs) cause progressive loss of light-sensitive photoreceptors in the eye and can lead to blindness. Gene-based therapies for IRDs have shown remarkable progress in the past decade, but the vast majority of forms remain untreatable. In the era of personalised medicine, induced pluripotent stem cells (iPSCs) emerge as a valuable system for cell replacement and to model IRD because they retain the specific patient genome and can differentiate into any adult cell type. Three-dimensional (3D) iPSCs-derived retina-like tissue called retinal organoid contains all major retina-specific cell types: amacrine, bipolar, horizontal, retinal ganglion cells, Müller glia, as well as rod and cone photoreceptors. Here, we describe the main applications of retinal organoids and provide a comprehensive overview of the state-of-art analysis methods that apply to this model system. Finally, we will discuss the outlook for improvements that would bring the cellular model a step closer to become an established system in research and treatment development of IRDs.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>34420069</pmid><doi>10.1007/s00018-021-03917-4</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-6429-654X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-682X
ispartof Cellular and molecular life sciences : CMLS, 2021-10, Vol.78 (19-20), p.6505-6532
issn 1420-682X
1420-9071
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8558279
source MEDLINE; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Animals
Biochemistry
Biomedical and Life Sciences
Biomedicine
Blindness
Cell Biology
Cell differentiation
Cell Differentiation - physiology
Gene therapy
Genomes
Horizontal cells
Humans
Induced Pluripotent Stem Cells - physiology
Life Sciences
Mueller cells
Neuroglia - physiology
Organoids
Organoids - physiology
Photoreception
Photoreceptors
Pluripotency
Precision medicine
Retina
Retina - physiology
Retinal Diseases - physiopathology
Retinal ganglion cells
Retinal Rod Photoreceptor Cells - physiology
Review
Stem cells
title A look into retinal organoids: methods, analytical techniques, and applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A19%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20look%20into%20retinal%20organoids:%20methods,%20analytical%20techniques,%20and%20applications&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Afanasyeva,%20Tess%20A.%20V.&rft.date=2021-10-01&rft.volume=78&rft.issue=19-20&rft.spage=6505&rft.epage=6532&rft.pages=6505-6532&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-021-03917-4&rft_dat=%3Cproquest_pubme%3E2563696675%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2589630090&rft_id=info:pmid/34420069&rfr_iscdi=true