iWhale: a computational pipeline based on Docker and SCons for detection and annotation of somatic variants in cancer WES data

Whole exome sequencing (WES) is a powerful approach for discovering sequence variants in cancer cells but its time effectiveness is limited by the complexity and issues of WES data analysis. Here we present iWhale, a customizable pipeline based on Docker and SCons, reliably detecting somatic variant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics 2021-05, Vol.22 (3)
Hauptverfasser: Binatti, Andrea, Bresolin, Silvia, Bortoluzzi, Stefania, Coppe, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Briefings in bioinformatics
container_volume 22
creator Binatti, Andrea
Bresolin, Silvia
Bortoluzzi, Stefania
Coppe, Alessandro
description Whole exome sequencing (WES) is a powerful approach for discovering sequence variants in cancer cells but its time effectiveness is limited by the complexity and issues of WES data analysis. Here we present iWhale, a customizable pipeline based on Docker and SCons, reliably detecting somatic variants by three complementary callers (MuTect2, Strelka2 and VarScan2). The results are combined to obtain a single variant call format file for each sample and variants are annotated by integrating a wide range of information extracted from several reference databases, ultimately allowing variant and gene prioritization according to different criteria. iWhale allows users to conduct a complex series of WES analyses with a powerful yet customizable and easy-to-use tool, running on most operating systems (macOs, GNU/Linux and Windows). iWhale code is freely available at https://github.com/alexcoppe/iWhale and the docker image is downloadable from https://hub.docker.com/r/alexcoppe/iwhale.
doi_str_mv 10.1093/bib/bbaa065
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8557746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405333720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-565238dfd8cbec57d9e6059804453d7ac1a29eefc021a10ba04fe16f5ddd11c93</originalsourceid><addsrcrecordid>eNpVUU1r3DAQFaGh2Wx6yr3oWChOJMuy7B4KZfMJCzkkJUcxlsZdtbbkSt5ALvnt8Xa3S3Kax8ybN8N7hJxydsZZLc4b15w3DQAr5QGZ8UKprGCy-LDBpcpkUYojcpzSb8Zypir-kRyJvBBlLcSMvLjHFXT4jQI1oR_WI4wueOjo4AbsnEfaQEJLg6cXwfzBSMFber8IPtE2RGpxRLNZ-dcH78NWgYaWptBP2NAniA78mKjz1IA3k8jj5T21MMIJOWyhS_hpV-fk59Xlw-ImW95d3y5-LDMjKj5mspS5qGxrK9OgkcrWWDJZV6wopLAKDIe8RmwNyzlw1gArWuRlK621nJtazMn3re6wbnq0Bv0YodNDdD3EZx3A6fcT71b6V3jSlZRKTQ7OyZedQAx_15hG3btksOvAY1gnnU-WCyFUzibq1y3VxJBSxHZ_hjO9SUxPieldYhP789vP9tz_EYlXyXGViA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405333720</pqid></control><display><type>article</type><title>iWhale: a computational pipeline based on Docker and SCons for detection and annotation of somatic variants in cancer WES data</title><source>Access via Oxford University Press (Open Access Collection)</source><source>EBSCOhost Business Source Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Binatti, Andrea ; Bresolin, Silvia ; Bortoluzzi, Stefania ; Coppe, Alessandro</creator><creatorcontrib>Binatti, Andrea ; Bresolin, Silvia ; Bortoluzzi, Stefania ; Coppe, Alessandro</creatorcontrib><description>Whole exome sequencing (WES) is a powerful approach for discovering sequence variants in cancer cells but its time effectiveness is limited by the complexity and issues of WES data analysis. Here we present iWhale, a customizable pipeline based on Docker and SCons, reliably detecting somatic variants by three complementary callers (MuTect2, Strelka2 and VarScan2). The results are combined to obtain a single variant call format file for each sample and variants are annotated by integrating a wide range of information extracted from several reference databases, ultimately allowing variant and gene prioritization according to different criteria. iWhale allows users to conduct a complex series of WES analyses with a powerful yet customizable and easy-to-use tool, running on most operating systems (macOs, GNU/Linux and Windows). iWhale code is freely available at https://github.com/alexcoppe/iWhale and the docker image is downloadable from https://hub.docker.com/r/alexcoppe/iwhale.</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbaa065</identifier><identifier>PMID: 32436933</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Problem Solving Protocol</subject><ispartof>Briefings in bioinformatics, 2021-05, Vol.22 (3)</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><rights>The Author(s) 2020. Published by Oxford University Press. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-565238dfd8cbec57d9e6059804453d7ac1a29eefc021a10ba04fe16f5ddd11c93</citedby><cites>FETCH-LOGICAL-c381t-565238dfd8cbec57d9e6059804453d7ac1a29eefc021a10ba04fe16f5ddd11c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8557746/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8557746/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32436933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Binatti, Andrea</creatorcontrib><creatorcontrib>Bresolin, Silvia</creatorcontrib><creatorcontrib>Bortoluzzi, Stefania</creatorcontrib><creatorcontrib>Coppe, Alessandro</creatorcontrib><title>iWhale: a computational pipeline based on Docker and SCons for detection and annotation of somatic variants in cancer WES data</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Whole exome sequencing (WES) is a powerful approach for discovering sequence variants in cancer cells but its time effectiveness is limited by the complexity and issues of WES data analysis. Here we present iWhale, a customizable pipeline based on Docker and SCons, reliably detecting somatic variants by three complementary callers (MuTect2, Strelka2 and VarScan2). The results are combined to obtain a single variant call format file for each sample and variants are annotated by integrating a wide range of information extracted from several reference databases, ultimately allowing variant and gene prioritization according to different criteria. iWhale allows users to conduct a complex series of WES analyses with a powerful yet customizable and easy-to-use tool, running on most operating systems (macOs, GNU/Linux and Windows). iWhale code is freely available at https://github.com/alexcoppe/iWhale and the docker image is downloadable from https://hub.docker.com/r/alexcoppe/iwhale.</description><subject>Problem Solving Protocol</subject><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVUU1r3DAQFaGh2Wx6yr3oWChOJMuy7B4KZfMJCzkkJUcxlsZdtbbkSt5ALvnt8Xa3S3Kax8ybN8N7hJxydsZZLc4b15w3DQAr5QGZ8UKprGCy-LDBpcpkUYojcpzSb8Zypir-kRyJvBBlLcSMvLjHFXT4jQI1oR_WI4wueOjo4AbsnEfaQEJLg6cXwfzBSMFber8IPtE2RGpxRLNZ-dcH78NWgYaWptBP2NAniA78mKjz1IA3k8jj5T21MMIJOWyhS_hpV-fk59Xlw-ImW95d3y5-LDMjKj5mspS5qGxrK9OgkcrWWDJZV6wopLAKDIe8RmwNyzlw1gArWuRlK621nJtazMn3re6wbnq0Bv0YodNDdD3EZx3A6fcT71b6V3jSlZRKTQ7OyZedQAx_15hG3btksOvAY1gnnU-WCyFUzibq1y3VxJBSxHZ_hjO9SUxPieldYhP789vP9tz_EYlXyXGViA</recordid><startdate>20210520</startdate><enddate>20210520</enddate><creator>Binatti, Andrea</creator><creator>Bresolin, Silvia</creator><creator>Bortoluzzi, Stefania</creator><creator>Coppe, Alessandro</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210520</creationdate><title>iWhale: a computational pipeline based on Docker and SCons for detection and annotation of somatic variants in cancer WES data</title><author>Binatti, Andrea ; Bresolin, Silvia ; Bortoluzzi, Stefania ; Coppe, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-565238dfd8cbec57d9e6059804453d7ac1a29eefc021a10ba04fe16f5ddd11c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Problem Solving Protocol</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Binatti, Andrea</creatorcontrib><creatorcontrib>Bresolin, Silvia</creatorcontrib><creatorcontrib>Bortoluzzi, Stefania</creatorcontrib><creatorcontrib>Coppe, Alessandro</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Binatti, Andrea</au><au>Bresolin, Silvia</au><au>Bortoluzzi, Stefania</au><au>Coppe, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>iWhale: a computational pipeline based on Docker and SCons for detection and annotation of somatic variants in cancer WES data</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2021-05-20</date><risdate>2021</risdate><volume>22</volume><issue>3</issue><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>Whole exome sequencing (WES) is a powerful approach for discovering sequence variants in cancer cells but its time effectiveness is limited by the complexity and issues of WES data analysis. Here we present iWhale, a customizable pipeline based on Docker and SCons, reliably detecting somatic variants by three complementary callers (MuTect2, Strelka2 and VarScan2). The results are combined to obtain a single variant call format file for each sample and variants are annotated by integrating a wide range of information extracted from several reference databases, ultimately allowing variant and gene prioritization according to different criteria. iWhale allows users to conduct a complex series of WES analyses with a powerful yet customizable and easy-to-use tool, running on most operating systems (macOs, GNU/Linux and Windows). iWhale code is freely available at https://github.com/alexcoppe/iWhale and the docker image is downloadable from https://hub.docker.com/r/alexcoppe/iwhale.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32436933</pmid><doi>10.1093/bib/bbaa065</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-5463
ispartof Briefings in bioinformatics, 2021-05, Vol.22 (3)
issn 1467-5463
1477-4054
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8557746
source Access via Oxford University Press (Open Access Collection); EBSCOhost Business Source Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Problem Solving Protocol
title iWhale: a computational pipeline based on Docker and SCons for detection and annotation of somatic variants in cancer WES data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=iWhale:%20a%20computational%20pipeline%20based%20on%20Docker%20and%20SCons%20for%20detection%20and%20annotation%20of%20somatic%20variants%20in%20cancer%20WES%20data&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Binatti,%20Andrea&rft.date=2021-05-20&rft.volume=22&rft.issue=3&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbaa065&rft_dat=%3Cproquest_pubme%3E2405333720%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405333720&rft_id=info:pmid/32436933&rfr_iscdi=true