Tuna Swarm Optimization: A Novel Swarm-Based Metaheuristic Algorithm for Global Optimization

In this paper, a novel swarm-based metaheuristic algorithm is proposed, which is called tuna swarm optimization (TSO). The main inspiration for TSO is based on the cooperative foraging behavior of tuna swarm. The work mimics two foraging behaviors of tuna swarm, including spiral foraging and parabol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence and neuroscience 2021, Vol.2021 (1), p.9210050-9210050
Hauptverfasser: Xie, Lei, Han, Tong, Zhou, Huan, Zhang, Zhuo-Ran, Han, Bo, Tang, Andi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9210050
container_issue 1
container_start_page 9210050
container_title Computational intelligence and neuroscience
container_volume 2021
creator Xie, Lei
Han, Tong
Zhou, Huan
Zhang, Zhuo-Ran
Han, Bo
Tang, Andi
description In this paper, a novel swarm-based metaheuristic algorithm is proposed, which is called tuna swarm optimization (TSO). The main inspiration for TSO is based on the cooperative foraging behavior of tuna swarm. The work mimics two foraging behaviors of tuna swarm, including spiral foraging and parabolic foraging, for developing an effective metaheuristic algorithm. The performance of TSO is evaluated by comparison with other metaheuristics on a set of benchmark functions and several real engineering problems. Sensitivity, scalability, robustness, and convergence analyses were used and combined with the Wilcoxon rank-sum test and Friedman test. The simulation results show that TSO performs better compared to other comparative algorithms.
doi_str_mv 10.1155/2021/9210050
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8550856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696844177</galeid><sourcerecordid>A696844177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-ecc9cfb54dbc768519f9e0cc409cf3021b540e5cc30ef0a6fb2690859fe05ebd3</originalsourceid><addsrcrecordid>eNp9kc9rFDEYhoNY7C9vnmXAi1DHJplJMulBWIu2QmsP1psQMpkvuymZyZrMtOhfb4ZdV-vBU0K-hyffy4vQC4LfEsLYKcWUnEpKMGb4CTogvBElo6J6urtzto8OU7rLhGCYPkP7VS0oYVwcoG-306CLLw869sXNenS9-6lHF4azYlF8DvfgN7PyvU7QFdcw6hVM0aXRmWLhlyG6cdUXNsTiwodW-0eSY7RntU_wfHseoa8fP9yeX5ZXNxefzhdXpakFH0swRhrbsrprjeANI9JKwMbUOD9XOV4eYWDGVBgs1ty2lEvcMGkBM2i76gi923jXU9tDZ2AYo_ZqHV2v4w8VtFOPJ4NbqWW4Vw1j2cOz4PVWEMP3CdKoepcMeK8HCFNSlElCaSOZyOirf9C7MMUhx8vUTBAm8R9qqT0oN9iQ_zWzVC245E1dEzG73mwoE0NKEexuZYLVXK6ay1XbcjP-8u-YO_h3mxk42QArN3T6wf1f9wvc76wg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2589571590</pqid></control><display><type>article</type><title>Tuna Swarm Optimization: A Novel Swarm-Based Metaheuristic Algorithm for Global Optimization</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Xie, Lei ; Han, Tong ; Zhou, Huan ; Zhang, Zhuo-Ran ; Han, Bo ; Tang, Andi</creator><contributor>Khalil, Ahmed Mostafa ; Ahmed Mostafa Khalil</contributor><creatorcontrib>Xie, Lei ; Han, Tong ; Zhou, Huan ; Zhang, Zhuo-Ran ; Han, Bo ; Tang, Andi ; Khalil, Ahmed Mostafa ; Ahmed Mostafa Khalil</creatorcontrib><description>In this paper, a novel swarm-based metaheuristic algorithm is proposed, which is called tuna swarm optimization (TSO). The main inspiration for TSO is based on the cooperative foraging behavior of tuna swarm. The work mimics two foraging behaviors of tuna swarm, including spiral foraging and parabolic foraging, for developing an effective metaheuristic algorithm. The performance of TSO is evaluated by comparison with other metaheuristics on a set of benchmark functions and several real engineering problems. Sensitivity, scalability, robustness, and convergence analyses were used and combined with the Wilcoxon rank-sum test and Friedman test. The simulation results show that TSO performs better compared to other comparative algorithms.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2021/9210050</identifier><identifier>PMID: 34721567</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Algorithms ; Analysis ; Benchmarking ; Computer Simulation ; Design engineering ; Education ; Engineering ; Evolution ; Exploitation ; Food ; Foraging behavior ; Global optimization ; Heuristic methods ; Mathematical models ; Mathematical optimization ; Methods ; Optimization algorithms ; Review ; Swimming</subject><ispartof>Computational intelligence and neuroscience, 2021, Vol.2021 (1), p.9210050-9210050</ispartof><rights>Copyright © 2021 Lei Xie et al.</rights><rights>COPYRIGHT 2021 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2021 Lei Xie et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2021 Lei Xie et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-ecc9cfb54dbc768519f9e0cc409cf3021b540e5cc30ef0a6fb2690859fe05ebd3</citedby><cites>FETCH-LOGICAL-c476t-ecc9cfb54dbc768519f9e0cc409cf3021b540e5cc30ef0a6fb2690859fe05ebd3</cites><orcidid>0000-0002-8837-8977 ; 0000-0002-0185-3289 ; 0000-0003-4694-5053</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550856/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550856/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34721567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Khalil, Ahmed Mostafa</contributor><contributor>Ahmed Mostafa Khalil</contributor><creatorcontrib>Xie, Lei</creatorcontrib><creatorcontrib>Han, Tong</creatorcontrib><creatorcontrib>Zhou, Huan</creatorcontrib><creatorcontrib>Zhang, Zhuo-Ran</creatorcontrib><creatorcontrib>Han, Bo</creatorcontrib><creatorcontrib>Tang, Andi</creatorcontrib><title>Tuna Swarm Optimization: A Novel Swarm-Based Metaheuristic Algorithm for Global Optimization</title><title>Computational intelligence and neuroscience</title><addtitle>Comput Intell Neurosci</addtitle><description>In this paper, a novel swarm-based metaheuristic algorithm is proposed, which is called tuna swarm optimization (TSO). The main inspiration for TSO is based on the cooperative foraging behavior of tuna swarm. The work mimics two foraging behaviors of tuna swarm, including spiral foraging and parabolic foraging, for developing an effective metaheuristic algorithm. The performance of TSO is evaluated by comparison with other metaheuristics on a set of benchmark functions and several real engineering problems. Sensitivity, scalability, robustness, and convergence analyses were used and combined with the Wilcoxon rank-sum test and Friedman test. The simulation results show that TSO performs better compared to other comparative algorithms.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Benchmarking</subject><subject>Computer Simulation</subject><subject>Design engineering</subject><subject>Education</subject><subject>Engineering</subject><subject>Evolution</subject><subject>Exploitation</subject><subject>Food</subject><subject>Foraging behavior</subject><subject>Global optimization</subject><subject>Heuristic methods</subject><subject>Mathematical models</subject><subject>Mathematical optimization</subject><subject>Methods</subject><subject>Optimization algorithms</subject><subject>Review</subject><subject>Swimming</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc9rFDEYhoNY7C9vnmXAi1DHJplJMulBWIu2QmsP1psQMpkvuymZyZrMtOhfb4ZdV-vBU0K-hyffy4vQC4LfEsLYKcWUnEpKMGb4CTogvBElo6J6urtzto8OU7rLhGCYPkP7VS0oYVwcoG-306CLLw869sXNenS9-6lHF4azYlF8DvfgN7PyvU7QFdcw6hVM0aXRmWLhlyG6cdUXNsTiwodW-0eSY7RntU_wfHseoa8fP9yeX5ZXNxefzhdXpakFH0swRhrbsrprjeANI9JKwMbUOD9XOV4eYWDGVBgs1ty2lEvcMGkBM2i76gi923jXU9tDZ2AYo_ZqHV2v4w8VtFOPJ4NbqWW4Vw1j2cOz4PVWEMP3CdKoepcMeK8HCFNSlElCaSOZyOirf9C7MMUhx8vUTBAm8R9qqT0oN9iQ_zWzVC245E1dEzG73mwoE0NKEexuZYLVXK6ay1XbcjP-8u-YO_h3mxk42QArN3T6wf1f9wvc76wg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Xie, Lei</creator><creator>Han, Tong</creator><creator>Zhou, Huan</creator><creator>Zhang, Zhuo-Ran</creator><creator>Han, Bo</creator><creator>Tang, Andi</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8837-8977</orcidid><orcidid>https://orcid.org/0000-0002-0185-3289</orcidid><orcidid>https://orcid.org/0000-0003-4694-5053</orcidid></search><sort><creationdate>2021</creationdate><title>Tuna Swarm Optimization: A Novel Swarm-Based Metaheuristic Algorithm for Global Optimization</title><author>Xie, Lei ; Han, Tong ; Zhou, Huan ; Zhang, Zhuo-Ran ; Han, Bo ; Tang, Andi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-ecc9cfb54dbc768519f9e0cc409cf3021b540e5cc30ef0a6fb2690859fe05ebd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Benchmarking</topic><topic>Computer Simulation</topic><topic>Design engineering</topic><topic>Education</topic><topic>Engineering</topic><topic>Evolution</topic><topic>Exploitation</topic><topic>Food</topic><topic>Foraging behavior</topic><topic>Global optimization</topic><topic>Heuristic methods</topic><topic>Mathematical models</topic><topic>Mathematical optimization</topic><topic>Methods</topic><topic>Optimization algorithms</topic><topic>Review</topic><topic>Swimming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Lei</creatorcontrib><creatorcontrib>Han, Tong</creatorcontrib><creatorcontrib>Zhou, Huan</creatorcontrib><creatorcontrib>Zhang, Zhuo-Ran</creatorcontrib><creatorcontrib>Han, Bo</creatorcontrib><creatorcontrib>Tang, Andi</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational intelligence and neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Lei</au><au>Han, Tong</au><au>Zhou, Huan</au><au>Zhang, Zhuo-Ran</au><au>Han, Bo</au><au>Tang, Andi</au><au>Khalil, Ahmed Mostafa</au><au>Ahmed Mostafa Khalil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuna Swarm Optimization: A Novel Swarm-Based Metaheuristic Algorithm for Global Optimization</atitle><jtitle>Computational intelligence and neuroscience</jtitle><addtitle>Comput Intell Neurosci</addtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><spage>9210050</spage><epage>9210050</epage><pages>9210050-9210050</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>In this paper, a novel swarm-based metaheuristic algorithm is proposed, which is called tuna swarm optimization (TSO). The main inspiration for TSO is based on the cooperative foraging behavior of tuna swarm. The work mimics two foraging behaviors of tuna swarm, including spiral foraging and parabolic foraging, for developing an effective metaheuristic algorithm. The performance of TSO is evaluated by comparison with other metaheuristics on a set of benchmark functions and several real engineering problems. Sensitivity, scalability, robustness, and convergence analyses were used and combined with the Wilcoxon rank-sum test and Friedman test. The simulation results show that TSO performs better compared to other comparative algorithms.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>34721567</pmid><doi>10.1155/2021/9210050</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8837-8977</orcidid><orcidid>https://orcid.org/0000-0002-0185-3289</orcidid><orcidid>https://orcid.org/0000-0003-4694-5053</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5265
ispartof Computational intelligence and neuroscience, 2021, Vol.2021 (1), p.9210050-9210050
issn 1687-5265
1687-5273
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8550856
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Analysis
Benchmarking
Computer Simulation
Design engineering
Education
Engineering
Evolution
Exploitation
Food
Foraging behavior
Global optimization
Heuristic methods
Mathematical models
Mathematical optimization
Methods
Optimization algorithms
Review
Swimming
title Tuna Swarm Optimization: A Novel Swarm-Based Metaheuristic Algorithm for Global Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuna%20Swarm%20Optimization:%20A%20Novel%20Swarm-Based%20Metaheuristic%20Algorithm%20for%20Global%20Optimization&rft.jtitle=Computational%20intelligence%20and%20neuroscience&rft.au=Xie,%20Lei&rft.date=2021&rft.volume=2021&rft.issue=1&rft.spage=9210050&rft.epage=9210050&rft.pages=9210050-9210050&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2021/9210050&rft_dat=%3Cgale_pubme%3EA696844177%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2589571590&rft_id=info:pmid/34721567&rft_galeid=A696844177&rfr_iscdi=true