An intelligent Bayesian hybrid approach to help autism diagnosis
This paper proposes a Bayesian hybrid approach based on neural networks and fuzzy systems to construct fuzzy rules to assist experts in detecting features and relations regarding the presence of autism in human beings. The model proposed in this paper works with a database generated through mobile d...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2021, Vol.25 (14), p.9163-9183 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9183 |
---|---|
container_issue | 14 |
container_start_page | 9163 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 25 |
creator | Souza, Paulo Vitor de Campos Guimaraes, Augusto Junio Araujo, Vanessa Souza Lughofer, Edwin |
description | This paper proposes a Bayesian hybrid approach based on neural networks and fuzzy systems to construct fuzzy rules to assist experts in detecting features and relations regarding the presence of autism in human beings. The model proposed in this paper works with a database generated through mobile devices that deals with diagnoses of autistic characteristics in human beings who answer a series of questions in a mobile application. The Bayesian model works with the construction of Gaussian fuzzy neurons in the first and logical neurons in the second layer of the model to form a fuzzy inference system connected to an artificial neural network that activates a robust output neuron. The new fuzzy neural network model was compared with traditional state-of-the-art machine learning models based on high-dimensional based on real-world data sets comprising the autism occurrence in children, adults, and adolescents. The results (97.73- Children/94.32-Adolescent/97.28-Adult) demonstrate the efficiency of our new method in determining children, adolescents, and adults with autistic traits (being among the top performers among all ML models tested), can generate knowledge about the dataset through fuzzy rules. |
doi_str_mv | 10.1007/s00500-021-05877-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8550741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2591221624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-604f92bad7521ccd4ce95d4c31367ea133a0de93ab2118c2683e3af57851b4a83</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhq2qqEuBP8AB5dhL2vFXnFxQYUVbJCQu7dmaON5dr7J2sJNK--8xmwXRSy-2pXnmnfFDyCWFrxRAfUsAEqAERkuQtVIlfCCnVHBeKqGaj4c3K1Ul-IJ8TmkLmVSSfyILLhQDBfKUfL_xhfOj7Xu3tn4sbnFvk0NfbPZtdF2BwxADmk0xhmJj-6HAaXRpV3QO1z4kl87JyQr7ZC-O9xn58-Pu9_JX-fD4835581AaIaqxrECsGtZipySjxnTC2Ebmk1NeKYuUc4TONhxbRmltWFVzy3ElVS1pK7DmZ-R6zh2mdmc7k5eN2Oshuh3GvQ7o9L8V7zZ6Hf7qWkpQguaAL8eAGJ4mm0a9c8nkj6O3YUqayYYyRismMspm1MSQUrSrtzEU9It6PavXWag-qNeQm67eL_jW8uo6A3wGUi75tY16G6bos7T_xT4DCjSPqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2591221624</pqid></control><display><type>article</type><title>An intelligent Bayesian hybrid approach to help autism diagnosis</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Souza, Paulo Vitor de Campos ; Guimaraes, Augusto Junio ; Araujo, Vanessa Souza ; Lughofer, Edwin</creator><creatorcontrib>Souza, Paulo Vitor de Campos ; Guimaraes, Augusto Junio ; Araujo, Vanessa Souza ; Lughofer, Edwin</creatorcontrib><description>This paper proposes a Bayesian hybrid approach based on neural networks and fuzzy systems to construct fuzzy rules to assist experts in detecting features and relations regarding the presence of autism in human beings. The model proposed in this paper works with a database generated through mobile devices that deals with diagnoses of autistic characteristics in human beings who answer a series of questions in a mobile application. The Bayesian model works with the construction of Gaussian fuzzy neurons in the first and logical neurons in the second layer of the model to form a fuzzy inference system connected to an artificial neural network that activates a robust output neuron. The new fuzzy neural network model was compared with traditional state-of-the-art machine learning models based on high-dimensional based on real-world data sets comprising the autism occurrence in children, adults, and adolescents. The results (97.73- Children/94.32-Adolescent/97.28-Adult) demonstrate the efficiency of our new method in determining children, adolescents, and adults with autistic traits (being among the top performers among all ML models tested), can generate knowledge about the dataset through fuzzy rules.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-021-05877-0</identifier><identifier>PMID: 34720705</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Computational Intelligence ; Control ; Engineering ; Fuzzy Systems and Their Mathematics ; Mathematical Logic and Foundations ; Mechatronics ; Robotics</subject><ispartof>Soft computing (Berlin, Germany), 2021, Vol.25 (14), p.9163-9183</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-604f92bad7521ccd4ce95d4c31367ea133a0de93ab2118c2683e3af57851b4a83</citedby><cites>FETCH-LOGICAL-c446t-604f92bad7521ccd4ce95d4c31367ea133a0de93ab2118c2683e3af57851b4a83</cites><orcidid>0000-0002-7343-5844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-021-05877-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00500-021-05877-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,27911,27912,33732,41475,42544,51306,64372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34720705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Souza, Paulo Vitor de Campos</creatorcontrib><creatorcontrib>Guimaraes, Augusto Junio</creatorcontrib><creatorcontrib>Araujo, Vanessa Souza</creatorcontrib><creatorcontrib>Lughofer, Edwin</creatorcontrib><title>An intelligent Bayesian hybrid approach to help autism diagnosis</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><addtitle>Soft comput</addtitle><description>This paper proposes a Bayesian hybrid approach based on neural networks and fuzzy systems to construct fuzzy rules to assist experts in detecting features and relations regarding the presence of autism in human beings. The model proposed in this paper works with a database generated through mobile devices that deals with diagnoses of autistic characteristics in human beings who answer a series of questions in a mobile application. The Bayesian model works with the construction of Gaussian fuzzy neurons in the first and logical neurons in the second layer of the model to form a fuzzy inference system connected to an artificial neural network that activates a robust output neuron. The new fuzzy neural network model was compared with traditional state-of-the-art machine learning models based on high-dimensional based on real-world data sets comprising the autism occurrence in children, adults, and adolescents. The results (97.73- Children/94.32-Adolescent/97.28-Adult) demonstrate the efficiency of our new method in determining children, adolescents, and adults with autistic traits (being among the top performers among all ML models tested), can generate knowledge about the dataset through fuzzy rules.</description><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Engineering</subject><subject>Fuzzy Systems and Their Mathematics</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Robotics</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1P3DAQhq2qqEuBP8AB5dhL2vFXnFxQYUVbJCQu7dmaON5dr7J2sJNK--8xmwXRSy-2pXnmnfFDyCWFrxRAfUsAEqAERkuQtVIlfCCnVHBeKqGaj4c3K1Ul-IJ8TmkLmVSSfyILLhQDBfKUfL_xhfOj7Xu3tn4sbnFvk0NfbPZtdF2BwxADmk0xhmJj-6HAaXRpV3QO1z4kl87JyQr7ZC-O9xn58-Pu9_JX-fD4835581AaIaqxrECsGtZipySjxnTC2Ebmk1NeKYuUc4TONhxbRmltWFVzy3ElVS1pK7DmZ-R6zh2mdmc7k5eN2Oshuh3GvQ7o9L8V7zZ6Hf7qWkpQguaAL8eAGJ4mm0a9c8nkj6O3YUqayYYyRismMspm1MSQUrSrtzEU9It6PavXWag-qNeQm67eL_jW8uo6A3wGUi75tY16G6bos7T_xT4DCjSPqg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Souza, Paulo Vitor de Campos</creator><creator>Guimaraes, Augusto Junio</creator><creator>Araujo, Vanessa Souza</creator><creator>Lughofer, Edwin</creator><general>Springer Berlin Heidelberg</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7343-5844</orcidid></search><sort><creationdate>2021</creationdate><title>An intelligent Bayesian hybrid approach to help autism diagnosis</title><author>Souza, Paulo Vitor de Campos ; Guimaraes, Augusto Junio ; Araujo, Vanessa Souza ; Lughofer, Edwin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-604f92bad7521ccd4ce95d4c31367ea133a0de93ab2118c2683e3af57851b4a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Engineering</topic><topic>Fuzzy Systems and Their Mathematics</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Souza, Paulo Vitor de Campos</creatorcontrib><creatorcontrib>Guimaraes, Augusto Junio</creatorcontrib><creatorcontrib>Araujo, Vanessa Souza</creatorcontrib><creatorcontrib>Lughofer, Edwin</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Souza, Paulo Vitor de Campos</au><au>Guimaraes, Augusto Junio</au><au>Araujo, Vanessa Souza</au><au>Lughofer, Edwin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An intelligent Bayesian hybrid approach to help autism diagnosis</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><addtitle>Soft comput</addtitle><date>2021</date><risdate>2021</risdate><volume>25</volume><issue>14</issue><spage>9163</spage><epage>9183</epage><pages>9163-9183</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>This paper proposes a Bayesian hybrid approach based on neural networks and fuzzy systems to construct fuzzy rules to assist experts in detecting features and relations regarding the presence of autism in human beings. The model proposed in this paper works with a database generated through mobile devices that deals with diagnoses of autistic characteristics in human beings who answer a series of questions in a mobile application. The Bayesian model works with the construction of Gaussian fuzzy neurons in the first and logical neurons in the second layer of the model to form a fuzzy inference system connected to an artificial neural network that activates a robust output neuron. The new fuzzy neural network model was compared with traditional state-of-the-art machine learning models based on high-dimensional based on real-world data sets comprising the autism occurrence in children, adults, and adolescents. The results (97.73- Children/94.32-Adolescent/97.28-Adult) demonstrate the efficiency of our new method in determining children, adolescents, and adults with autistic traits (being among the top performers among all ML models tested), can generate knowledge about the dataset through fuzzy rules.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34720705</pmid><doi>10.1007/s00500-021-05877-0</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-7343-5844</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2021, Vol.25 (14), p.9163-9183 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8550741 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Artificial Intelligence Computational Intelligence Control Engineering Fuzzy Systems and Their Mathematics Mathematical Logic and Foundations Mechatronics Robotics |
title | An intelligent Bayesian hybrid approach to help autism diagnosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20intelligent%20Bayesian%20hybrid%20approach%20to%20help%20autism%20diagnosis&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Souza,%20Paulo%20Vitor%20de%20Campos&rft.date=2021&rft.volume=25&rft.issue=14&rft.spage=9163&rft.epage=9183&rft.pages=9163-9183&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-021-05877-0&rft_dat=%3Cproquest_pubme%3E2591221624%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2591221624&rft_id=info:pmid/34720705&rfr_iscdi=true |