An intelligent Bayesian hybrid approach to help autism diagnosis

This paper proposes a Bayesian hybrid approach based on neural networks and fuzzy systems to construct fuzzy rules to assist experts in detecting features and relations regarding the presence of autism in human beings. The model proposed in this paper works with a database generated through mobile d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2021, Vol.25 (14), p.9163-9183
Hauptverfasser: Souza, Paulo Vitor de Campos, Guimaraes, Augusto Junio, Araujo, Vanessa Souza, Lughofer, Edwin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9183
container_issue 14
container_start_page 9163
container_title Soft computing (Berlin, Germany)
container_volume 25
creator Souza, Paulo Vitor de Campos
Guimaraes, Augusto Junio
Araujo, Vanessa Souza
Lughofer, Edwin
description This paper proposes a Bayesian hybrid approach based on neural networks and fuzzy systems to construct fuzzy rules to assist experts in detecting features and relations regarding the presence of autism in human beings. The model proposed in this paper works with a database generated through mobile devices that deals with diagnoses of autistic characteristics in human beings who answer a series of questions in a mobile application. The Bayesian model works with the construction of Gaussian fuzzy neurons in the first and logical neurons in the second layer of the model to form a fuzzy inference system connected to an artificial neural network that activates a robust output neuron. The new fuzzy neural network model was compared with traditional state-of-the-art machine learning models based on high-dimensional based on real-world data sets comprising the autism occurrence in children, adults, and adolescents. The results (97.73- Children/94.32-Adolescent/97.28-Adult) demonstrate the efficiency of our new method in determining children, adolescents, and adults with autistic traits (being among the top performers among all ML models tested), can generate knowledge about the dataset through fuzzy rules.
doi_str_mv 10.1007/s00500-021-05877-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8550741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2591221624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-604f92bad7521ccd4ce95d4c31367ea133a0de93ab2118c2683e3af57851b4a83</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhq2qqEuBP8AB5dhL2vFXnFxQYUVbJCQu7dmaON5dr7J2sJNK--8xmwXRSy-2pXnmnfFDyCWFrxRAfUsAEqAERkuQtVIlfCCnVHBeKqGaj4c3K1Ul-IJ8TmkLmVSSfyILLhQDBfKUfL_xhfOj7Xu3tn4sbnFvk0NfbPZtdF2BwxADmk0xhmJj-6HAaXRpV3QO1z4kl87JyQr7ZC-O9xn58-Pu9_JX-fD4835581AaIaqxrECsGtZipySjxnTC2Ebmk1NeKYuUc4TONhxbRmltWFVzy3ElVS1pK7DmZ-R6zh2mdmc7k5eN2Oshuh3GvQ7o9L8V7zZ6Hf7qWkpQguaAL8eAGJ4mm0a9c8nkj6O3YUqayYYyRismMspm1MSQUrSrtzEU9It6PavXWag-qNeQm67eL_jW8uo6A3wGUi75tY16G6bos7T_xT4DCjSPqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2591221624</pqid></control><display><type>article</type><title>An intelligent Bayesian hybrid approach to help autism diagnosis</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Souza, Paulo Vitor de Campos ; Guimaraes, Augusto Junio ; Araujo, Vanessa Souza ; Lughofer, Edwin</creator><creatorcontrib>Souza, Paulo Vitor de Campos ; Guimaraes, Augusto Junio ; Araujo, Vanessa Souza ; Lughofer, Edwin</creatorcontrib><description>This paper proposes a Bayesian hybrid approach based on neural networks and fuzzy systems to construct fuzzy rules to assist experts in detecting features and relations regarding the presence of autism in human beings. The model proposed in this paper works with a database generated through mobile devices that deals with diagnoses of autistic characteristics in human beings who answer a series of questions in a mobile application. The Bayesian model works with the construction of Gaussian fuzzy neurons in the first and logical neurons in the second layer of the model to form a fuzzy inference system connected to an artificial neural network that activates a robust output neuron. The new fuzzy neural network model was compared with traditional state-of-the-art machine learning models based on high-dimensional based on real-world data sets comprising the autism occurrence in children, adults, and adolescents. The results (97.73- Children/94.32-Adolescent/97.28-Adult) demonstrate the efficiency of our new method in determining children, adolescents, and adults with autistic traits (being among the top performers among all ML models tested), can generate knowledge about the dataset through fuzzy rules.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-021-05877-0</identifier><identifier>PMID: 34720705</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Computational Intelligence ; Control ; Engineering ; Fuzzy Systems and Their Mathematics ; Mathematical Logic and Foundations ; Mechatronics ; Robotics</subject><ispartof>Soft computing (Berlin, Germany), 2021, Vol.25 (14), p.9163-9183</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-604f92bad7521ccd4ce95d4c31367ea133a0de93ab2118c2683e3af57851b4a83</citedby><cites>FETCH-LOGICAL-c446t-604f92bad7521ccd4ce95d4c31367ea133a0de93ab2118c2683e3af57851b4a83</cites><orcidid>0000-0002-7343-5844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-021-05877-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00500-021-05877-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,27911,27912,33732,41475,42544,51306,64372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34720705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Souza, Paulo Vitor de Campos</creatorcontrib><creatorcontrib>Guimaraes, Augusto Junio</creatorcontrib><creatorcontrib>Araujo, Vanessa Souza</creatorcontrib><creatorcontrib>Lughofer, Edwin</creatorcontrib><title>An intelligent Bayesian hybrid approach to help autism diagnosis</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><addtitle>Soft comput</addtitle><description>This paper proposes a Bayesian hybrid approach based on neural networks and fuzzy systems to construct fuzzy rules to assist experts in detecting features and relations regarding the presence of autism in human beings. The model proposed in this paper works with a database generated through mobile devices that deals with diagnoses of autistic characteristics in human beings who answer a series of questions in a mobile application. The Bayesian model works with the construction of Gaussian fuzzy neurons in the first and logical neurons in the second layer of the model to form a fuzzy inference system connected to an artificial neural network that activates a robust output neuron. The new fuzzy neural network model was compared with traditional state-of-the-art machine learning models based on high-dimensional based on real-world data sets comprising the autism occurrence in children, adults, and adolescents. The results (97.73- Children/94.32-Adolescent/97.28-Adult) demonstrate the efficiency of our new method in determining children, adolescents, and adults with autistic traits (being among the top performers among all ML models tested), can generate knowledge about the dataset through fuzzy rules.</description><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Engineering</subject><subject>Fuzzy Systems and Their Mathematics</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Robotics</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1P3DAQhq2qqEuBP8AB5dhL2vFXnFxQYUVbJCQu7dmaON5dr7J2sJNK--8xmwXRSy-2pXnmnfFDyCWFrxRAfUsAEqAERkuQtVIlfCCnVHBeKqGaj4c3K1Ul-IJ8TmkLmVSSfyILLhQDBfKUfL_xhfOj7Xu3tn4sbnFvk0NfbPZtdF2BwxADmk0xhmJj-6HAaXRpV3QO1z4kl87JyQr7ZC-O9xn58-Pu9_JX-fD4835581AaIaqxrECsGtZipySjxnTC2Ebmk1NeKYuUc4TONhxbRmltWFVzy3ElVS1pK7DmZ-R6zh2mdmc7k5eN2Oshuh3GvQ7o9L8V7zZ6Hf7qWkpQguaAL8eAGJ4mm0a9c8nkj6O3YUqayYYyRismMspm1MSQUrSrtzEU9It6PavXWag-qNeQm67eL_jW8uo6A3wGUi75tY16G6bos7T_xT4DCjSPqg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Souza, Paulo Vitor de Campos</creator><creator>Guimaraes, Augusto Junio</creator><creator>Araujo, Vanessa Souza</creator><creator>Lughofer, Edwin</creator><general>Springer Berlin Heidelberg</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7343-5844</orcidid></search><sort><creationdate>2021</creationdate><title>An intelligent Bayesian hybrid approach to help autism diagnosis</title><author>Souza, Paulo Vitor de Campos ; Guimaraes, Augusto Junio ; Araujo, Vanessa Souza ; Lughofer, Edwin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-604f92bad7521ccd4ce95d4c31367ea133a0de93ab2118c2683e3af57851b4a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Engineering</topic><topic>Fuzzy Systems and Their Mathematics</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Souza, Paulo Vitor de Campos</creatorcontrib><creatorcontrib>Guimaraes, Augusto Junio</creatorcontrib><creatorcontrib>Araujo, Vanessa Souza</creatorcontrib><creatorcontrib>Lughofer, Edwin</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Souza, Paulo Vitor de Campos</au><au>Guimaraes, Augusto Junio</au><au>Araujo, Vanessa Souza</au><au>Lughofer, Edwin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An intelligent Bayesian hybrid approach to help autism diagnosis</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><addtitle>Soft comput</addtitle><date>2021</date><risdate>2021</risdate><volume>25</volume><issue>14</issue><spage>9163</spage><epage>9183</epage><pages>9163-9183</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>This paper proposes a Bayesian hybrid approach based on neural networks and fuzzy systems to construct fuzzy rules to assist experts in detecting features and relations regarding the presence of autism in human beings. The model proposed in this paper works with a database generated through mobile devices that deals with diagnoses of autistic characteristics in human beings who answer a series of questions in a mobile application. The Bayesian model works with the construction of Gaussian fuzzy neurons in the first and logical neurons in the second layer of the model to form a fuzzy inference system connected to an artificial neural network that activates a robust output neuron. The new fuzzy neural network model was compared with traditional state-of-the-art machine learning models based on high-dimensional based on real-world data sets comprising the autism occurrence in children, adults, and adolescents. The results (97.73- Children/94.32-Adolescent/97.28-Adult) demonstrate the efficiency of our new method in determining children, adolescents, and adults with autistic traits (being among the top performers among all ML models tested), can generate knowledge about the dataset through fuzzy rules.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34720705</pmid><doi>10.1007/s00500-021-05877-0</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-7343-5844</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2021, Vol.25 (14), p.9163-9183
issn 1432-7643
1433-7479
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8550741
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Artificial Intelligence
Computational Intelligence
Control
Engineering
Fuzzy Systems and Their Mathematics
Mathematical Logic and Foundations
Mechatronics
Robotics
title An intelligent Bayesian hybrid approach to help autism diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20intelligent%20Bayesian%20hybrid%20approach%20to%20help%20autism%20diagnosis&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Souza,%20Paulo%20Vitor%20de%20Campos&rft.date=2021&rft.volume=25&rft.issue=14&rft.spage=9163&rft.epage=9183&rft.pages=9163-9183&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-021-05877-0&rft_dat=%3Cproquest_pubme%3E2591221624%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2591221624&rft_id=info:pmid/34720705&rfr_iscdi=true