Tropical ideals do not realise all Bergman fans

Every tropical ideal in the sense of Maclagan–Rincón has an associated tropical variety, a finite polyhedral complex equipped with positive integral weights on its maximal cells. This leads to the realisability question, ubiquitous in tropical geometry, of which weighted polyhedral complexes arise i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research in the mathematical sciences 2021, Vol.8 (3), p.44-44, Article 44
Hauptverfasser: Draisma, Jan, Rincón, Felipe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44
container_issue 3
container_start_page 44
container_title Research in the mathematical sciences
container_volume 8
creator Draisma, Jan
Rincón, Felipe
description Every tropical ideal in the sense of Maclagan–Rincón has an associated tropical variety, a finite polyhedral complex equipped with positive integral weights on its maximal cells. This leads to the realisability question, ubiquitous in tropical geometry, of which weighted polyhedral complexes arise in this manner. Using work of Las Vergnas on the non-existence of tensor products of matroids, we prove that there is no tropical ideal whose variety is the Bergman fan of the direct sum of the Vámos matroid and the uniform matroid of rank two on three elements and in which all maximal cones have weight one.
doi_str_mv 10.1007/s40687-021-00271-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8550647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597808465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-ff712e6d29f97f6c5641be91fe40a490cc7a4086da7582e02ab343059f8d381b3</originalsourceid><addsrcrecordid>eNp9kU1Lw0AQhhdRbKn9A54CXrzEzm72KxdBi19Q8FLPyybZrSlJtu4mgv_erSmKHjzNDPO8LzO8CJ1juMIAYhEocClSIDgFIAKn_AhNCc5FmksqjmPPCEkBUzpB8xC2AIAFz2gGp2iSUSGkADpFi7V3u7rUTVJXRjchqVzSuT7xcaiDSXTTJLfGb1rdJVZ34Qyd2IiZ-aHO0Mv93Xr5mK6eH56WN6u0pAz3qbUCE8MrkttcWF4yTnFhcmwNBU1zKEuhKUheacEkMUB0sT-N5VZWmcRFNkPXo-9uKFpTlabrvW7Uztet9h_K6Vr93nT1q9q4dyUZA05FNLg8GHj3NpjQq7YOpWka3Rk3BEVYLiRIyllEL_6gWzf4Lr4XKcpBSEyzSJGRKr0LwRv7fQwGtY9EjZGoGIn6ikTxKMpGUYhwtzH-x_of1Sc-WotG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546078143</pqid></control><display><type>article</type><title>Tropical ideals do not realise all Bergman fans</title><source>SpringerLink Journals - AutoHoldings</source><creator>Draisma, Jan ; Rincón, Felipe</creator><creatorcontrib>Draisma, Jan ; Rincón, Felipe</creatorcontrib><description>Every tropical ideal in the sense of Maclagan–Rincón has an associated tropical variety, a finite polyhedral complex equipped with positive integral weights on its maximal cells. This leads to the realisability question, ubiquitous in tropical geometry, of which weighted polyhedral complexes arise in this manner. Using work of Las Vergnas on the non-existence of tensor products of matroids, we prove that there is no tropical ideal whose variety is the Bergman fan of the direct sum of the Vámos matroid and the uniform matroid of rank two on three elements and in which all maximal cones have weight one.</description><identifier>ISSN: 2522-0144</identifier><identifier>EISSN: 2197-9847</identifier><identifier>DOI: 10.1007/s40687-021-00271-6</identifier><identifier>PMID: 34778704</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Cones ; Mathematics ; Mathematics and Statistics ; Tensors</subject><ispartof>Research in the mathematical sciences, 2021, Vol.8 (3), p.44-44, Article 44</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-ff712e6d29f97f6c5641be91fe40a490cc7a4086da7582e02ab343059f8d381b3</citedby><cites>FETCH-LOGICAL-c451t-ff712e6d29f97f6c5641be91fe40a490cc7a4086da7582e02ab343059f8d381b3</cites><orcidid>0000-0001-7248-8250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40687-021-00271-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40687-021-00271-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Draisma, Jan</creatorcontrib><creatorcontrib>Rincón, Felipe</creatorcontrib><title>Tropical ideals do not realise all Bergman fans</title><title>Research in the mathematical sciences</title><addtitle>Res Math Sci</addtitle><description>Every tropical ideal in the sense of Maclagan–Rincón has an associated tropical variety, a finite polyhedral complex equipped with positive integral weights on its maximal cells. This leads to the realisability question, ubiquitous in tropical geometry, of which weighted polyhedral complexes arise in this manner. Using work of Las Vergnas on the non-existence of tensor products of matroids, we prove that there is no tropical ideal whose variety is the Bergman fan of the direct sum of the Vámos matroid and the uniform matroid of rank two on three elements and in which all maximal cones have weight one.</description><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Cones</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Tensors</subject><issn>2522-0144</issn><issn>2197-9847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kU1Lw0AQhhdRbKn9A54CXrzEzm72KxdBi19Q8FLPyybZrSlJtu4mgv_erSmKHjzNDPO8LzO8CJ1juMIAYhEocClSIDgFIAKn_AhNCc5FmksqjmPPCEkBUzpB8xC2AIAFz2gGp2iSUSGkADpFi7V3u7rUTVJXRjchqVzSuT7xcaiDSXTTJLfGb1rdJVZ34Qyd2IiZ-aHO0Mv93Xr5mK6eH56WN6u0pAz3qbUCE8MrkttcWF4yTnFhcmwNBU1zKEuhKUheacEkMUB0sT-N5VZWmcRFNkPXo-9uKFpTlabrvW7Uztet9h_K6Vr93nT1q9q4dyUZA05FNLg8GHj3NpjQq7YOpWka3Rk3BEVYLiRIyllEL_6gWzf4Lr4XKcpBSEyzSJGRKr0LwRv7fQwGtY9EjZGoGIn6ikTxKMpGUYhwtzH-x_of1Sc-WotG</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Draisma, Jan</creator><creator>Rincón, Felipe</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7248-8250</orcidid></search><sort><creationdate>2021</creationdate><title>Tropical ideals do not realise all Bergman fans</title><author>Draisma, Jan ; Rincón, Felipe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-ff712e6d29f97f6c5641be91fe40a490cc7a4086da7582e02ab343059f8d381b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Cones</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Draisma, Jan</creatorcontrib><creatorcontrib>Rincón, Felipe</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Research in the mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Draisma, Jan</au><au>Rincón, Felipe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tropical ideals do not realise all Bergman fans</atitle><jtitle>Research in the mathematical sciences</jtitle><stitle>Res Math Sci</stitle><date>2021</date><risdate>2021</risdate><volume>8</volume><issue>3</issue><spage>44</spage><epage>44</epage><pages>44-44</pages><artnum>44</artnum><issn>2522-0144</issn><eissn>2197-9847</eissn><abstract>Every tropical ideal in the sense of Maclagan–Rincón has an associated tropical variety, a finite polyhedral complex equipped with positive integral weights on its maximal cells. This leads to the realisability question, ubiquitous in tropical geometry, of which weighted polyhedral complexes arise in this manner. Using work of Las Vergnas on the non-existence of tensor products of matroids, we prove that there is no tropical ideal whose variety is the Bergman fan of the direct sum of the Vámos matroid and the uniform matroid of rank two on three elements and in which all maximal cones have weight one.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>34778704</pmid><doi>10.1007/s40687-021-00271-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7248-8250</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2522-0144
ispartof Research in the mathematical sciences, 2021, Vol.8 (3), p.44-44, Article 44
issn 2522-0144
2197-9847
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8550647
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Computational Mathematics and Numerical Analysis
Cones
Mathematics
Mathematics and Statistics
Tensors
title Tropical ideals do not realise all Bergman fans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A01%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tropical%20ideals%20do%20not%20realise%20all%20Bergman%20fans&rft.jtitle=Research%20in%20the%20mathematical%20sciences&rft.au=Draisma,%20Jan&rft.date=2021&rft.volume=8&rft.issue=3&rft.spage=44&rft.epage=44&rft.pages=44-44&rft.artnum=44&rft.issn=2522-0144&rft.eissn=2197-9847&rft_id=info:doi/10.1007/s40687-021-00271-6&rft_dat=%3Cproquest_pubme%3E2597808465%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546078143&rft_id=info:pmid/34778704&rfr_iscdi=true