Tropical ideals do not realise all Bergman fans
Every tropical ideal in the sense of Maclagan–Rincón has an associated tropical variety, a finite polyhedral complex equipped with positive integral weights on its maximal cells. This leads to the realisability question, ubiquitous in tropical geometry, of which weighted polyhedral complexes arise i...
Gespeichert in:
Veröffentlicht in: | Research in the mathematical sciences 2021, Vol.8 (3), p.44-44, Article 44 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 44 |
---|---|
container_issue | 3 |
container_start_page | 44 |
container_title | Research in the mathematical sciences |
container_volume | 8 |
creator | Draisma, Jan Rincón, Felipe |
description | Every tropical ideal in the sense of Maclagan–Rincón has an associated tropical variety, a finite polyhedral complex equipped with positive integral weights on its maximal cells. This leads to the realisability question, ubiquitous in tropical geometry, of which weighted polyhedral complexes arise in this manner. Using work of Las Vergnas on the non-existence of tensor products of matroids, we prove that there is no tropical ideal whose variety is the Bergman fan of the direct sum of the Vámos matroid and the uniform matroid of rank two on three elements and in which all maximal cones have weight one. |
doi_str_mv | 10.1007/s40687-021-00271-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8550647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597808465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-ff712e6d29f97f6c5641be91fe40a490cc7a4086da7582e02ab343059f8d381b3</originalsourceid><addsrcrecordid>eNp9kU1Lw0AQhhdRbKn9A54CXrzEzm72KxdBi19Q8FLPyybZrSlJtu4mgv_erSmKHjzNDPO8LzO8CJ1juMIAYhEocClSIDgFIAKn_AhNCc5FmksqjmPPCEkBUzpB8xC2AIAFz2gGp2iSUSGkADpFi7V3u7rUTVJXRjchqVzSuT7xcaiDSXTTJLfGb1rdJVZ34Qyd2IiZ-aHO0Mv93Xr5mK6eH56WN6u0pAz3qbUCE8MrkttcWF4yTnFhcmwNBU1zKEuhKUheacEkMUB0sT-N5VZWmcRFNkPXo-9uKFpTlabrvW7Uztet9h_K6Vr93nT1q9q4dyUZA05FNLg8GHj3NpjQq7YOpWka3Rk3BEVYLiRIyllEL_6gWzf4Lr4XKcpBSEyzSJGRKr0LwRv7fQwGtY9EjZGoGIn6ikTxKMpGUYhwtzH-x_of1Sc-WotG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546078143</pqid></control><display><type>article</type><title>Tropical ideals do not realise all Bergman fans</title><source>SpringerLink Journals - AutoHoldings</source><creator>Draisma, Jan ; Rincón, Felipe</creator><creatorcontrib>Draisma, Jan ; Rincón, Felipe</creatorcontrib><description>Every tropical ideal in the sense of Maclagan–Rincón has an associated tropical variety, a finite polyhedral complex equipped with positive integral weights on its maximal cells. This leads to the realisability question, ubiquitous in tropical geometry, of which weighted polyhedral complexes arise in this manner. Using work of Las Vergnas on the non-existence of tensor products of matroids, we prove that there is no tropical ideal whose variety is the Bergman fan of the direct sum of the Vámos matroid and the uniform matroid of rank two on three elements and in which all maximal cones have weight one.</description><identifier>ISSN: 2522-0144</identifier><identifier>EISSN: 2197-9847</identifier><identifier>DOI: 10.1007/s40687-021-00271-6</identifier><identifier>PMID: 34778704</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Cones ; Mathematics ; Mathematics and Statistics ; Tensors</subject><ispartof>Research in the mathematical sciences, 2021, Vol.8 (3), p.44-44, Article 44</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-ff712e6d29f97f6c5641be91fe40a490cc7a4086da7582e02ab343059f8d381b3</citedby><cites>FETCH-LOGICAL-c451t-ff712e6d29f97f6c5641be91fe40a490cc7a4086da7582e02ab343059f8d381b3</cites><orcidid>0000-0001-7248-8250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40687-021-00271-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40687-021-00271-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Draisma, Jan</creatorcontrib><creatorcontrib>Rincón, Felipe</creatorcontrib><title>Tropical ideals do not realise all Bergman fans</title><title>Research in the mathematical sciences</title><addtitle>Res Math Sci</addtitle><description>Every tropical ideal in the sense of Maclagan–Rincón has an associated tropical variety, a finite polyhedral complex equipped with positive integral weights on its maximal cells. This leads to the realisability question, ubiquitous in tropical geometry, of which weighted polyhedral complexes arise in this manner. Using work of Las Vergnas on the non-existence of tensor products of matroids, we prove that there is no tropical ideal whose variety is the Bergman fan of the direct sum of the Vámos matroid and the uniform matroid of rank two on three elements and in which all maximal cones have weight one.</description><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Cones</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Tensors</subject><issn>2522-0144</issn><issn>2197-9847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kU1Lw0AQhhdRbKn9A54CXrzEzm72KxdBi19Q8FLPyybZrSlJtu4mgv_erSmKHjzNDPO8LzO8CJ1juMIAYhEocClSIDgFIAKn_AhNCc5FmksqjmPPCEkBUzpB8xC2AIAFz2gGp2iSUSGkADpFi7V3u7rUTVJXRjchqVzSuT7xcaiDSXTTJLfGb1rdJVZ34Qyd2IiZ-aHO0Mv93Xr5mK6eH56WN6u0pAz3qbUCE8MrkttcWF4yTnFhcmwNBU1zKEuhKUheacEkMUB0sT-N5VZWmcRFNkPXo-9uKFpTlabrvW7Uztet9h_K6Vr93nT1q9q4dyUZA05FNLg8GHj3NpjQq7YOpWka3Rk3BEVYLiRIyllEL_6gWzf4Lr4XKcpBSEyzSJGRKr0LwRv7fQwGtY9EjZGoGIn6ikTxKMpGUYhwtzH-x_of1Sc-WotG</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Draisma, Jan</creator><creator>Rincón, Felipe</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7248-8250</orcidid></search><sort><creationdate>2021</creationdate><title>Tropical ideals do not realise all Bergman fans</title><author>Draisma, Jan ; Rincón, Felipe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-ff712e6d29f97f6c5641be91fe40a490cc7a4086da7582e02ab343059f8d381b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Cones</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Draisma, Jan</creatorcontrib><creatorcontrib>Rincón, Felipe</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Research in the mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Draisma, Jan</au><au>Rincón, Felipe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tropical ideals do not realise all Bergman fans</atitle><jtitle>Research in the mathematical sciences</jtitle><stitle>Res Math Sci</stitle><date>2021</date><risdate>2021</risdate><volume>8</volume><issue>3</issue><spage>44</spage><epage>44</epage><pages>44-44</pages><artnum>44</artnum><issn>2522-0144</issn><eissn>2197-9847</eissn><abstract>Every tropical ideal in the sense of Maclagan–Rincón has an associated tropical variety, a finite polyhedral complex equipped with positive integral weights on its maximal cells. This leads to the realisability question, ubiquitous in tropical geometry, of which weighted polyhedral complexes arise in this manner. Using work of Las Vergnas on the non-existence of tensor products of matroids, we prove that there is no tropical ideal whose variety is the Bergman fan of the direct sum of the Vámos matroid and the uniform matroid of rank two on three elements and in which all maximal cones have weight one.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>34778704</pmid><doi>10.1007/s40687-021-00271-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7248-8250</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2522-0144 |
ispartof | Research in the mathematical sciences, 2021, Vol.8 (3), p.44-44, Article 44 |
issn | 2522-0144 2197-9847 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8550647 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Computational Mathematics and Numerical Analysis Cones Mathematics Mathematics and Statistics Tensors |
title | Tropical ideals do not realise all Bergman fans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A01%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tropical%20ideals%20do%20not%20realise%20all%20Bergman%20fans&rft.jtitle=Research%20in%20the%20mathematical%20sciences&rft.au=Draisma,%20Jan&rft.date=2021&rft.volume=8&rft.issue=3&rft.spage=44&rft.epage=44&rft.pages=44-44&rft.artnum=44&rft.issn=2522-0144&rft.eissn=2197-9847&rft_id=info:doi/10.1007/s40687-021-00271-6&rft_dat=%3Cproquest_pubme%3E2597808465%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546078143&rft_id=info:pmid/34778704&rfr_iscdi=true |