Evidence linking calcium to increased organo-mineral association in soils
Geochemical indicators are emerging as important predictors of soil organic carbon (SOC) dynamics, but evidence concerning the role of calcium (Ca) is scarce. This study investigates the role of Ca prevalence in SOC accumulation by comparing otherwise similar sites with (CaCO₃-bearing) or without ca...
Gespeichert in:
Veröffentlicht in: | Biogeochemistry 2021-04, Vol.153 (3), p.223-241 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 241 |
---|---|
container_issue | 3 |
container_start_page | 223 |
container_title | Biogeochemistry |
container_volume | 153 |
creator | Rowley, Mike C. Grand, Stephanie Spangenberg, Jorge E. Verrecchia, Eric P. |
description | Geochemical indicators are emerging as important predictors of soil organic carbon (SOC) dynamics, but evidence concerning the role of calcium (Ca) is scarce. This study investigates the role of Ca prevalence in SOC accumulation by comparing otherwise similar sites with (CaCO₃-bearing) or without carbonates (CaCO₃-free). We measured the SOC content and indicators of organic matter quality (C stable isotope composition, expressed as δ¹³C values, and thermal stability) in bulk soil samples. We then used sequential sonication and density fractionation (DF) to separate two occluded pools from free and mineral-associated SOC. The SOC content, mass, and δ¹³C values were determined in all the fractions. X-ray photoelectron spectroscopy was used to investigate the surface chemistry of selected fractions. Our hypothesis was that occlusion would be more prevalent at the CaCO₃-bearing site due to the influence of Ca on aggregation, inhibiting oxidative transformation, and preserving lower δ¹³C values. Bulk SOC content was twice as high in the CaCO₃-bearing profiles, which also had lower bulk δ¹³C values, and more occluded SOC. Yet, contrary to our hypothesis, occlusion only accounted for a small proportion of total SOC (< 10%). Instead, it was the heavy fraction (HF), containing mineral-associated organic C, which accounted for the majority of total SOC and for the lower bulk δ¹³C values. Overall, an increased Ca prevalence was associated with a near-doubling of mineral-associated SOC content. Future investigations should now aim to isolate Ca-mediated complexation processes that increase organo-mineral association and preserve organic matter with lower δ¹³C values. |
doi_str_mv | 10.1007/s10533-021-00779-7 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8550578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48760908</jstor_id><sourcerecordid>48760908</sourcerecordid><originalsourceid>FETCH-LOGICAL-a546t-32607dad6f7815ecc52eb805d19f62c7b9613d2aa2c711f88432711c7eabbdfc3</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhS1ERW8LfwAJFNENG4Mf8SObSqgqUKkSG5DYWY4zufUlsYvtVOq_r0vK5bHoymPNN2eOfRB6Sck7Soh6nykRnGPCKK5X1WH1BG2oUBwLKr4_RRtCpcZMSH6IjnLeEUI6RfgzdMhbpaSQcoMuzm_8AMFBM_nww4dt4-zk_DI3JTY-uAQ2w9DEtLUh4tkHSHZqbM7ReVt8DBVqcvRTfo4ORjtlePFwHqNvH8-_nn3Gl18-XZx9uMRWtLJgziRRgx3kqDQV4Jxg0GsiBtqNkjnVd5LygVlba0pHrVvOauEU2L4fRseP0emqe730MwwOQqmWzHXys023Jlpv_u0Ef2W28cZoIYhQugq8WQViLt5k5wu4KxdDAFcM1Uwqoir09mFLij8XyMXMPjuYJhsgLtkw0SnNKigqevIfuotLCvUPKkVVDanteKXYSrkUc04w7h1TYu7jNGucpsZpfsVp7l28_vut-5Hf-VWAr0CurbCF9Gf3o7Kv1qldLjHtVVutJOmI5nfcurUG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2517105493</pqid></control><display><type>article</type><title>Evidence linking calcium to increased organo-mineral association in soils</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rowley, Mike C. ; Grand, Stephanie ; Spangenberg, Jorge E. ; Verrecchia, Eric P.</creator><creatorcontrib>Rowley, Mike C. ; Grand, Stephanie ; Spangenberg, Jorge E. ; Verrecchia, Eric P. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Geochemical indicators are emerging as important predictors of soil organic carbon (SOC) dynamics, but evidence concerning the role of calcium (Ca) is scarce. This study investigates the role of Ca prevalence in SOC accumulation by comparing otherwise similar sites with (CaCO₃-bearing) or without carbonates (CaCO₃-free). We measured the SOC content and indicators of organic matter quality (C stable isotope composition, expressed as δ¹³C values, and thermal stability) in bulk soil samples. We then used sequential sonication and density fractionation (DF) to separate two occluded pools from free and mineral-associated SOC. The SOC content, mass, and δ¹³C values were determined in all the fractions. X-ray photoelectron spectroscopy was used to investigate the surface chemistry of selected fractions. Our hypothesis was that occlusion would be more prevalent at the CaCO₃-bearing site due to the influence of Ca on aggregation, inhibiting oxidative transformation, and preserving lower δ¹³C values. Bulk SOC content was twice as high in the CaCO₃-bearing profiles, which also had lower bulk δ¹³C values, and more occluded SOC. Yet, contrary to our hypothesis, occlusion only accounted for a small proportion of total SOC (< 10%). Instead, it was the heavy fraction (HF), containing mineral-associated organic C, which accounted for the majority of total SOC and for the lower bulk δ¹³C values. Overall, an increased Ca prevalence was associated with a near-doubling of mineral-associated SOC content. Future investigations should now aim to isolate Ca-mediated complexation processes that increase organo-mineral association and preserve organic matter with lower δ¹³C values.</description><identifier>ISSN: 0168-2563</identifier><identifier>EISSN: 1573-515X</identifier><identifier>DOI: 10.1007/s10533-021-00779-7</identifier><identifier>PMID: 34776566</identifier><language>eng</language><publisher>Cham: Springer Science + Business Media</publisher><subject>Aggregation ; Analytical methods ; Biogeosciences ; Bulk density ; Calcium ; Calcium carbonate ; Carbon stable isotopes ; Carbonates ; Density fractionation ; Earth and Environmental Science ; Earth Sciences ; Ecosystems ; Environmental Chemistry ; Fractionation ; GEOSCIENCES ; Hypotheses ; Indicators ; Investigations ; Isotope composition ; Life Sciences ; Occlusion ; Organic carbon ; Organic matter ; Organic soils ; ORIGINAL PAPERS ; Photoelectron spectroscopy ; Photoelectrons ; Rock-Eval® pyrolysis ; Soil ; Soil dynamics ; Soil organic carbon ; Soil stability ; Sonication ; Stable isotopes ; Surface chemistry ; Thermal stability ; X-ray photoelectron spectroscopy</subject><ispartof>Biogeochemistry, 2021-04, Vol.153 (3), p.223-241</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021.</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a546t-32607dad6f7815ecc52eb805d19f62c7b9613d2aa2c711f88432711c7eabbdfc3</citedby><cites>FETCH-LOGICAL-a546t-32607dad6f7815ecc52eb805d19f62c7b9613d2aa2c711f88432711c7eabbdfc3</cites><orcidid>0000-0001-8636-6414 ; 0000-0002-0239-3536 ; 0000-0001-7105-256X ; 0000-0002-2440-7855 ; 0000000224407855 ; 0000000202393536 ; 0000000186366414 ; 000000017105256X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10533-021-00779-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10533-021-00779-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34776566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1826707$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rowley, Mike C.</creatorcontrib><creatorcontrib>Grand, Stephanie</creatorcontrib><creatorcontrib>Spangenberg, Jorge E.</creatorcontrib><creatorcontrib>Verrecchia, Eric P.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Evidence linking calcium to increased organo-mineral association in soils</title><title>Biogeochemistry</title><addtitle>Biogeochemistry</addtitle><addtitle>Biogeochemistry</addtitle><description>Geochemical indicators are emerging as important predictors of soil organic carbon (SOC) dynamics, but evidence concerning the role of calcium (Ca) is scarce. This study investigates the role of Ca prevalence in SOC accumulation by comparing otherwise similar sites with (CaCO₃-bearing) or without carbonates (CaCO₃-free). We measured the SOC content and indicators of organic matter quality (C stable isotope composition, expressed as δ¹³C values, and thermal stability) in bulk soil samples. We then used sequential sonication and density fractionation (DF) to separate two occluded pools from free and mineral-associated SOC. The SOC content, mass, and δ¹³C values were determined in all the fractions. X-ray photoelectron spectroscopy was used to investigate the surface chemistry of selected fractions. Our hypothesis was that occlusion would be more prevalent at the CaCO₃-bearing site due to the influence of Ca on aggregation, inhibiting oxidative transformation, and preserving lower δ¹³C values. Bulk SOC content was twice as high in the CaCO₃-bearing profiles, which also had lower bulk δ¹³C values, and more occluded SOC. Yet, contrary to our hypothesis, occlusion only accounted for a small proportion of total SOC (< 10%). Instead, it was the heavy fraction (HF), containing mineral-associated organic C, which accounted for the majority of total SOC and for the lower bulk δ¹³C values. Overall, an increased Ca prevalence was associated with a near-doubling of mineral-associated SOC content. Future investigations should now aim to isolate Ca-mediated complexation processes that increase organo-mineral association and preserve organic matter with lower δ¹³C values.</description><subject>Aggregation</subject><subject>Analytical methods</subject><subject>Biogeosciences</subject><subject>Bulk density</subject><subject>Calcium</subject><subject>Calcium carbonate</subject><subject>Carbon stable isotopes</subject><subject>Carbonates</subject><subject>Density fractionation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecosystems</subject><subject>Environmental Chemistry</subject><subject>Fractionation</subject><subject>GEOSCIENCES</subject><subject>Hypotheses</subject><subject>Indicators</subject><subject>Investigations</subject><subject>Isotope composition</subject><subject>Life Sciences</subject><subject>Occlusion</subject><subject>Organic carbon</subject><subject>Organic matter</subject><subject>Organic soils</subject><subject>ORIGINAL PAPERS</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Rock-Eval® pyrolysis</subject><subject>Soil</subject><subject>Soil dynamics</subject><subject>Soil organic carbon</subject><subject>Soil stability</subject><subject>Sonication</subject><subject>Stable isotopes</subject><subject>Surface chemistry</subject><subject>Thermal stability</subject><subject>X-ray photoelectron spectroscopy</subject><issn>0168-2563</issn><issn>1573-515X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtv1TAQhS1ERW8LfwAJFNENG4Mf8SObSqgqUKkSG5DYWY4zufUlsYvtVOq_r0vK5bHoymPNN2eOfRB6Sck7Soh6nykRnGPCKK5X1WH1BG2oUBwLKr4_RRtCpcZMSH6IjnLeEUI6RfgzdMhbpaSQcoMuzm_8AMFBM_nww4dt4-zk_DI3JTY-uAQ2w9DEtLUh4tkHSHZqbM7ReVt8DBVqcvRTfo4ORjtlePFwHqNvH8-_nn3Gl18-XZx9uMRWtLJgziRRgx3kqDQV4Jxg0GsiBtqNkjnVd5LygVlba0pHrVvOauEU2L4fRseP0emqe730MwwOQqmWzHXys023Jlpv_u0Ef2W28cZoIYhQugq8WQViLt5k5wu4KxdDAFcM1Uwqoir09mFLij8XyMXMPjuYJhsgLtkw0SnNKigqevIfuotLCvUPKkVVDanteKXYSrkUc04w7h1TYu7jNGucpsZpfsVp7l28_vut-5Hf-VWAr0CurbCF9Gf3o7Kv1qldLjHtVVutJOmI5nfcurUG</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Rowley, Mike C.</creator><creator>Grand, Stephanie</creator><creator>Spangenberg, Jorge E.</creator><creator>Verrecchia, Eric P.</creator><general>Springer Science + Business Media</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8636-6414</orcidid><orcidid>https://orcid.org/0000-0002-0239-3536</orcidid><orcidid>https://orcid.org/0000-0001-7105-256X</orcidid><orcidid>https://orcid.org/0000-0002-2440-7855</orcidid><orcidid>https://orcid.org/0000000224407855</orcidid><orcidid>https://orcid.org/0000000202393536</orcidid><orcidid>https://orcid.org/0000000186366414</orcidid><orcidid>https://orcid.org/000000017105256X</orcidid></search><sort><creationdate>20210401</creationdate><title>Evidence linking calcium to increased organo-mineral association in soils</title><author>Rowley, Mike C. ; Grand, Stephanie ; Spangenberg, Jorge E. ; Verrecchia, Eric P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a546t-32607dad6f7815ecc52eb805d19f62c7b9613d2aa2c711f88432711c7eabbdfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aggregation</topic><topic>Analytical methods</topic><topic>Biogeosciences</topic><topic>Bulk density</topic><topic>Calcium</topic><topic>Calcium carbonate</topic><topic>Carbon stable isotopes</topic><topic>Carbonates</topic><topic>Density fractionation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecosystems</topic><topic>Environmental Chemistry</topic><topic>Fractionation</topic><topic>GEOSCIENCES</topic><topic>Hypotheses</topic><topic>Indicators</topic><topic>Investigations</topic><topic>Isotope composition</topic><topic>Life Sciences</topic><topic>Occlusion</topic><topic>Organic carbon</topic><topic>Organic matter</topic><topic>Organic soils</topic><topic>ORIGINAL PAPERS</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Rock-Eval® pyrolysis</topic><topic>Soil</topic><topic>Soil dynamics</topic><topic>Soil organic carbon</topic><topic>Soil stability</topic><topic>Sonication</topic><topic>Stable isotopes</topic><topic>Surface chemistry</topic><topic>Thermal stability</topic><topic>X-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rowley, Mike C.</creatorcontrib><creatorcontrib>Grand, Stephanie</creatorcontrib><creatorcontrib>Spangenberg, Jorge E.</creatorcontrib><creatorcontrib>Verrecchia, Eric P.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biogeochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rowley, Mike C.</au><au>Grand, Stephanie</au><au>Spangenberg, Jorge E.</au><au>Verrecchia, Eric P.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence linking calcium to increased organo-mineral association in soils</atitle><jtitle>Biogeochemistry</jtitle><stitle>Biogeochemistry</stitle><addtitle>Biogeochemistry</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>153</volume><issue>3</issue><spage>223</spage><epage>241</epage><pages>223-241</pages><issn>0168-2563</issn><eissn>1573-515X</eissn><abstract>Geochemical indicators are emerging as important predictors of soil organic carbon (SOC) dynamics, but evidence concerning the role of calcium (Ca) is scarce. This study investigates the role of Ca prevalence in SOC accumulation by comparing otherwise similar sites with (CaCO₃-bearing) or without carbonates (CaCO₃-free). We measured the SOC content and indicators of organic matter quality (C stable isotope composition, expressed as δ¹³C values, and thermal stability) in bulk soil samples. We then used sequential sonication and density fractionation (DF) to separate two occluded pools from free and mineral-associated SOC. The SOC content, mass, and δ¹³C values were determined in all the fractions. X-ray photoelectron spectroscopy was used to investigate the surface chemistry of selected fractions. Our hypothesis was that occlusion would be more prevalent at the CaCO₃-bearing site due to the influence of Ca on aggregation, inhibiting oxidative transformation, and preserving lower δ¹³C values. Bulk SOC content was twice as high in the CaCO₃-bearing profiles, which also had lower bulk δ¹³C values, and more occluded SOC. Yet, contrary to our hypothesis, occlusion only accounted for a small proportion of total SOC (< 10%). Instead, it was the heavy fraction (HF), containing mineral-associated organic C, which accounted for the majority of total SOC and for the lower bulk δ¹³C values. Overall, an increased Ca prevalence was associated with a near-doubling of mineral-associated SOC content. Future investigations should now aim to isolate Ca-mediated complexation processes that increase organo-mineral association and preserve organic matter with lower δ¹³C values.</abstract><cop>Cham</cop><pub>Springer Science + Business Media</pub><pmid>34776566</pmid><doi>10.1007/s10533-021-00779-7</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8636-6414</orcidid><orcidid>https://orcid.org/0000-0002-0239-3536</orcidid><orcidid>https://orcid.org/0000-0001-7105-256X</orcidid><orcidid>https://orcid.org/0000-0002-2440-7855</orcidid><orcidid>https://orcid.org/0000000224407855</orcidid><orcidid>https://orcid.org/0000000202393536</orcidid><orcidid>https://orcid.org/0000000186366414</orcidid><orcidid>https://orcid.org/000000017105256X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-2563 |
ispartof | Biogeochemistry, 2021-04, Vol.153 (3), p.223-241 |
issn | 0168-2563 1573-515X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8550578 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aggregation Analytical methods Biogeosciences Bulk density Calcium Calcium carbonate Carbon stable isotopes Carbonates Density fractionation Earth and Environmental Science Earth Sciences Ecosystems Environmental Chemistry Fractionation GEOSCIENCES Hypotheses Indicators Investigations Isotope composition Life Sciences Occlusion Organic carbon Organic matter Organic soils ORIGINAL PAPERS Photoelectron spectroscopy Photoelectrons Rock-Eval® pyrolysis Soil Soil dynamics Soil organic carbon Soil stability Sonication Stable isotopes Surface chemistry Thermal stability X-ray photoelectron spectroscopy |
title | Evidence linking calcium to increased organo-mineral association in soils |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A36%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20linking%20calcium%20to%20increased%20organo-mineral%20association%20in%20soils&rft.jtitle=Biogeochemistry&rft.au=Rowley,%20Mike%20C.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-04-01&rft.volume=153&rft.issue=3&rft.spage=223&rft.epage=241&rft.pages=223-241&rft.issn=0168-2563&rft.eissn=1573-515X&rft_id=info:doi/10.1007/s10533-021-00779-7&rft_dat=%3Cjstor_pubme%3E48760908%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2517105493&rft_id=info:pmid/34776566&rft_jstor_id=48760908&rfr_iscdi=true |