Real-time linear prediction of simultaneous and independent movements of two finger groups using an intracortical brain-machine interface

Modern brain-machine interfaces can return function to people with paralysis, but current upper extremity brain-machine interfaces are unable to reproduce control of individuated finger movements. Here, for the first time, we present a real-time, high-speed, linear brain-machine interface in nonhuma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2021-10, Vol.109 (19), p.3164-3177.e8
Hauptverfasser: Nason, Samuel R., Mender, Matthew J., Vaskov, Alex K., Willsey, Matthew S., Ganesh Kumar, Nishant, Kung, Theodore A., Patil, Parag G., Chestek, Cynthia A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3177.e8
container_issue 19
container_start_page 3164
container_title Neuron (Cambridge, Mass.)
container_volume 109
creator Nason, Samuel R.
Mender, Matthew J.
Vaskov, Alex K.
Willsey, Matthew S.
Ganesh Kumar, Nishant
Kung, Theodore A.
Patil, Parag G.
Chestek, Cynthia A.
description Modern brain-machine interfaces can return function to people with paralysis, but current upper extremity brain-machine interfaces are unable to reproduce control of individuated finger movements. Here, for the first time, we present a real-time, high-speed, linear brain-machine interface in nonhuman primates that utilizes intracortical neural signals to bridge this gap. We created a non-prehensile task that systematically individuates two finger groups, the index finger and the middle-ring-small fingers combined. During online brain control, the ReFIT Kalman filter could predict individuated finger group movements with high performance. Next, training ridge regression decoders with individual movements was sufficient to predict untrained combined movements and vice versa. Finally, we compared the postural and movement tuning of finger-related cortical activity to find that individual cortical units simultaneously encode multiple behavioral dimensions. Our results suggest that linear decoders may be sufficient for brain-machine interfaces to execute high-dimensional tasks with the performance levels required for naturalistic neural prostheses. [Display omitted] •Simultaneous and independent brain-machine interface control of two finger groups•Cortical tuning between manipulandum and brain-machine interface use is consistent•Linear decoders can predict untrained finger movements•Cortical units simultaneously encode multiple kinematic dimensions Nason et al. present a real-time brain-machine interface for controlling the simultaneous and independent movements of two groups of fingers in nonhuman primates. These techniques can be used to restore naturalistic control of paralyzed hands and enable a deeper understanding of how motor cortex represents dexterous finger behaviors.
doi_str_mv 10.1016/j.neuron.2021.08.009
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8549035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627321006048</els_id><sourcerecordid>2571928897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-eaf3538112abadf66232fcefae5032f890893f7f4d1c7406bee69e35c286350d3</originalsourceid><addsrcrecordid>eNp9UU2PFCEQJcaNO87uP_DA0Uu3QNM0XEzMxq9kExPjnglDF7NMuqEFeow_wX8tndlovHipKlKv3ivqIfSKkpYSKt6c2gBriqFlhNGWyJYQ9QztKFFDw6lSz9GOSCUawYbuGr3M-UQI5b2iL9B1x7lSshc79OsrmKkpfgY8-QAm4SXB6G3xMeDocPbzOhUTIK4ZmzBiH0ZYoIZQ8BzPMNcib8jyI2LnwxESPqa4LhmvuT7rUJ0pydiYirdmwodkfGhmYx-r4NaD5IyFG3TlzJTh9inv0cOH99_uPjX3Xz5-vnt331jOSWnAuK7vJKXMHMzohGAdcxacgZ7USqr66c4Njo_UDpyIA4BQ0PWWSdH1ZOz26O2Fd1kPM4wWtuUmvSQ_m_RTR-P1v53gH_UxnrXsuSJVe49ePxGk-H2FXPTss4VpulxJs36gikmphgrlF6hNMecE7o8MJXpzUZ_0xUW9uaiJ1NXFvytCvcPZQ9LZegi2GpPAFj1G_3-C36xRq7g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571928897</pqid></control><display><type>article</type><title>Real-time linear prediction of simultaneous and independent movements of two finger groups using an intracortical brain-machine interface</title><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nason, Samuel R. ; Mender, Matthew J. ; Vaskov, Alex K. ; Willsey, Matthew S. ; Ganesh Kumar, Nishant ; Kung, Theodore A. ; Patil, Parag G. ; Chestek, Cynthia A.</creator><creatorcontrib>Nason, Samuel R. ; Mender, Matthew J. ; Vaskov, Alex K. ; Willsey, Matthew S. ; Ganesh Kumar, Nishant ; Kung, Theodore A. ; Patil, Parag G. ; Chestek, Cynthia A.</creatorcontrib><description>Modern brain-machine interfaces can return function to people with paralysis, but current upper extremity brain-machine interfaces are unable to reproduce control of individuated finger movements. Here, for the first time, we present a real-time, high-speed, linear brain-machine interface in nonhuman primates that utilizes intracortical neural signals to bridge this gap. We created a non-prehensile task that systematically individuates two finger groups, the index finger and the middle-ring-small fingers combined. During online brain control, the ReFIT Kalman filter could predict individuated finger group movements with high performance. Next, training ridge regression decoders with individual movements was sufficient to predict untrained combined movements and vice versa. Finally, we compared the postural and movement tuning of finger-related cortical activity to find that individual cortical units simultaneously encode multiple behavioral dimensions. Our results suggest that linear decoders may be sufficient for brain-machine interfaces to execute high-dimensional tasks with the performance levels required for naturalistic neural prostheses. [Display omitted] •Simultaneous and independent brain-machine interface control of two finger groups•Cortical tuning between manipulandum and brain-machine interface use is consistent•Linear decoders can predict untrained finger movements•Cortical units simultaneously encode multiple kinematic dimensions Nason et al. present a real-time brain-machine interface for controlling the simultaneous and independent movements of two groups of fingers in nonhuman primates. These techniques can be used to restore naturalistic control of paralyzed hands and enable a deeper understanding of how motor cortex represents dexterous finger behaviors.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2021.08.009</identifier><identifier>PMID: 34499856</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>brain-machine interface ; hand prosthesis ; intracortical ; linear decoder ; multiple simultaneous targets ; primary motor cortex</subject><ispartof>Neuron (Cambridge, Mass.), 2021-10, Vol.109 (19), p.3164-3177.e8</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-eaf3538112abadf66232fcefae5032f890893f7f4d1c7406bee69e35c286350d3</citedby><cites>FETCH-LOGICAL-c440t-eaf3538112abadf66232fcefae5032f890893f7f4d1c7406bee69e35c286350d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2021.08.009$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Nason, Samuel R.</creatorcontrib><creatorcontrib>Mender, Matthew J.</creatorcontrib><creatorcontrib>Vaskov, Alex K.</creatorcontrib><creatorcontrib>Willsey, Matthew S.</creatorcontrib><creatorcontrib>Ganesh Kumar, Nishant</creatorcontrib><creatorcontrib>Kung, Theodore A.</creatorcontrib><creatorcontrib>Patil, Parag G.</creatorcontrib><creatorcontrib>Chestek, Cynthia A.</creatorcontrib><title>Real-time linear prediction of simultaneous and independent movements of two finger groups using an intracortical brain-machine interface</title><title>Neuron (Cambridge, Mass.)</title><description>Modern brain-machine interfaces can return function to people with paralysis, but current upper extremity brain-machine interfaces are unable to reproduce control of individuated finger movements. Here, for the first time, we present a real-time, high-speed, linear brain-machine interface in nonhuman primates that utilizes intracortical neural signals to bridge this gap. We created a non-prehensile task that systematically individuates two finger groups, the index finger and the middle-ring-small fingers combined. During online brain control, the ReFIT Kalman filter could predict individuated finger group movements with high performance. Next, training ridge regression decoders with individual movements was sufficient to predict untrained combined movements and vice versa. Finally, we compared the postural and movement tuning of finger-related cortical activity to find that individual cortical units simultaneously encode multiple behavioral dimensions. Our results suggest that linear decoders may be sufficient for brain-machine interfaces to execute high-dimensional tasks with the performance levels required for naturalistic neural prostheses. [Display omitted] •Simultaneous and independent brain-machine interface control of two finger groups•Cortical tuning between manipulandum and brain-machine interface use is consistent•Linear decoders can predict untrained finger movements•Cortical units simultaneously encode multiple kinematic dimensions Nason et al. present a real-time brain-machine interface for controlling the simultaneous and independent movements of two groups of fingers in nonhuman primates. These techniques can be used to restore naturalistic control of paralyzed hands and enable a deeper understanding of how motor cortex represents dexterous finger behaviors.</description><subject>brain-machine interface</subject><subject>hand prosthesis</subject><subject>intracortical</subject><subject>linear decoder</subject><subject>multiple simultaneous targets</subject><subject>primary motor cortex</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UU2PFCEQJcaNO87uP_DA0Uu3QNM0XEzMxq9kExPjnglDF7NMuqEFeow_wX8tndlovHipKlKv3ivqIfSKkpYSKt6c2gBriqFlhNGWyJYQ9QztKFFDw6lSz9GOSCUawYbuGr3M-UQI5b2iL9B1x7lSshc79OsrmKkpfgY8-QAm4SXB6G3xMeDocPbzOhUTIK4ZmzBiH0ZYoIZQ8BzPMNcib8jyI2LnwxESPqa4LhmvuT7rUJ0pydiYirdmwodkfGhmYx-r4NaD5IyFG3TlzJTh9inv0cOH99_uPjX3Xz5-vnt331jOSWnAuK7vJKXMHMzohGAdcxacgZ7USqr66c4Njo_UDpyIA4BQ0PWWSdH1ZOz26O2Fd1kPM4wWtuUmvSQ_m_RTR-P1v53gH_UxnrXsuSJVe49ePxGk-H2FXPTss4VpulxJs36gikmphgrlF6hNMecE7o8MJXpzUZ_0xUW9uaiJ1NXFvytCvcPZQ9LZegi2GpPAFj1G_3-C36xRq7g</recordid><startdate>20211006</startdate><enddate>20211006</enddate><creator>Nason, Samuel R.</creator><creator>Mender, Matthew J.</creator><creator>Vaskov, Alex K.</creator><creator>Willsey, Matthew S.</creator><creator>Ganesh Kumar, Nishant</creator><creator>Kung, Theodore A.</creator><creator>Patil, Parag G.</creator><creator>Chestek, Cynthia A.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20211006</creationdate><title>Real-time linear prediction of simultaneous and independent movements of two finger groups using an intracortical brain-machine interface</title><author>Nason, Samuel R. ; Mender, Matthew J. ; Vaskov, Alex K. ; Willsey, Matthew S. ; Ganesh Kumar, Nishant ; Kung, Theodore A. ; Patil, Parag G. ; Chestek, Cynthia A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-eaf3538112abadf66232fcefae5032f890893f7f4d1c7406bee69e35c286350d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>brain-machine interface</topic><topic>hand prosthesis</topic><topic>intracortical</topic><topic>linear decoder</topic><topic>multiple simultaneous targets</topic><topic>primary motor cortex</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nason, Samuel R.</creatorcontrib><creatorcontrib>Mender, Matthew J.</creatorcontrib><creatorcontrib>Vaskov, Alex K.</creatorcontrib><creatorcontrib>Willsey, Matthew S.</creatorcontrib><creatorcontrib>Ganesh Kumar, Nishant</creatorcontrib><creatorcontrib>Kung, Theodore A.</creatorcontrib><creatorcontrib>Patil, Parag G.</creatorcontrib><creatorcontrib>Chestek, Cynthia A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nason, Samuel R.</au><au>Mender, Matthew J.</au><au>Vaskov, Alex K.</au><au>Willsey, Matthew S.</au><au>Ganesh Kumar, Nishant</au><au>Kung, Theodore A.</au><au>Patil, Parag G.</au><au>Chestek, Cynthia A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time linear prediction of simultaneous and independent movements of two finger groups using an intracortical brain-machine interface</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><date>2021-10-06</date><risdate>2021</risdate><volume>109</volume><issue>19</issue><spage>3164</spage><epage>3177.e8</epage><pages>3164-3177.e8</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Modern brain-machine interfaces can return function to people with paralysis, but current upper extremity brain-machine interfaces are unable to reproduce control of individuated finger movements. Here, for the first time, we present a real-time, high-speed, linear brain-machine interface in nonhuman primates that utilizes intracortical neural signals to bridge this gap. We created a non-prehensile task that systematically individuates two finger groups, the index finger and the middle-ring-small fingers combined. During online brain control, the ReFIT Kalman filter could predict individuated finger group movements with high performance. Next, training ridge regression decoders with individual movements was sufficient to predict untrained combined movements and vice versa. Finally, we compared the postural and movement tuning of finger-related cortical activity to find that individual cortical units simultaneously encode multiple behavioral dimensions. Our results suggest that linear decoders may be sufficient for brain-machine interfaces to execute high-dimensional tasks with the performance levels required for naturalistic neural prostheses. [Display omitted] •Simultaneous and independent brain-machine interface control of two finger groups•Cortical tuning between manipulandum and brain-machine interface use is consistent•Linear decoders can predict untrained finger movements•Cortical units simultaneously encode multiple kinematic dimensions Nason et al. present a real-time brain-machine interface for controlling the simultaneous and independent movements of two groups of fingers in nonhuman primates. These techniques can be used to restore naturalistic control of paralyzed hands and enable a deeper understanding of how motor cortex represents dexterous finger behaviors.</abstract><pub>Elsevier Inc</pub><pmid>34499856</pmid><doi>10.1016/j.neuron.2021.08.009</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2021-10, Vol.109 (19), p.3164-3177.e8
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8549035
source Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects brain-machine interface
hand prosthesis
intracortical
linear decoder
multiple simultaneous targets
primary motor cortex
title Real-time linear prediction of simultaneous and independent movements of two finger groups using an intracortical brain-machine interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20linear%20prediction%20of%20simultaneous%20and%20independent%20movements%20of%20two%20finger%20groups%20using%20an%20intracortical%20brain-machine%20interface&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Nason,%20Samuel%20R.&rft.date=2021-10-06&rft.volume=109&rft.issue=19&rft.spage=3164&rft.epage=3177.e8&rft.pages=3164-3177.e8&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2021.08.009&rft_dat=%3Cproquest_pubme%3E2571928897%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571928897&rft_id=info:pmid/34499856&rft_els_id=S0896627321006048&rfr_iscdi=true