Real-time linear prediction of simultaneous and independent movements of two finger groups using an intracortical brain-machine interface
Modern brain-machine interfaces can return function to people with paralysis, but current upper extremity brain-machine interfaces are unable to reproduce control of individuated finger movements. Here, for the first time, we present a real-time, high-speed, linear brain-machine interface in nonhuma...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2021-10, Vol.109 (19), p.3164-3177.e8 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3177.e8 |
---|---|
container_issue | 19 |
container_start_page | 3164 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 109 |
creator | Nason, Samuel R. Mender, Matthew J. Vaskov, Alex K. Willsey, Matthew S. Ganesh Kumar, Nishant Kung, Theodore A. Patil, Parag G. Chestek, Cynthia A. |
description | Modern brain-machine interfaces can return function to people with paralysis, but current upper extremity brain-machine interfaces are unable to reproduce control of individuated finger movements. Here, for the first time, we present a real-time, high-speed, linear brain-machine interface in nonhuman primates that utilizes intracortical neural signals to bridge this gap. We created a non-prehensile task that systematically individuates two finger groups, the index finger and the middle-ring-small fingers combined. During online brain control, the ReFIT Kalman filter could predict individuated finger group movements with high performance. Next, training ridge regression decoders with individual movements was sufficient to predict untrained combined movements and vice versa. Finally, we compared the postural and movement tuning of finger-related cortical activity to find that individual cortical units simultaneously encode multiple behavioral dimensions. Our results suggest that linear decoders may be sufficient for brain-machine interfaces to execute high-dimensional tasks with the performance levels required for naturalistic neural prostheses.
[Display omitted]
•Simultaneous and independent brain-machine interface control of two finger groups•Cortical tuning between manipulandum and brain-machine interface use is consistent•Linear decoders can predict untrained finger movements•Cortical units simultaneously encode multiple kinematic dimensions
Nason et al. present a real-time brain-machine interface for controlling the simultaneous and independent movements of two groups of fingers in nonhuman primates. These techniques can be used to restore naturalistic control of paralyzed hands and enable a deeper understanding of how motor cortex represents dexterous finger behaviors. |
doi_str_mv | 10.1016/j.neuron.2021.08.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8549035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627321006048</els_id><sourcerecordid>2571928897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-eaf3538112abadf66232fcefae5032f890893f7f4d1c7406bee69e35c286350d3</originalsourceid><addsrcrecordid>eNp9UU2PFCEQJcaNO87uP_DA0Uu3QNM0XEzMxq9kExPjnglDF7NMuqEFeow_wX8tndlovHipKlKv3ivqIfSKkpYSKt6c2gBriqFlhNGWyJYQ9QztKFFDw6lSz9GOSCUawYbuGr3M-UQI5b2iL9B1x7lSshc79OsrmKkpfgY8-QAm4SXB6G3xMeDocPbzOhUTIK4ZmzBiH0ZYoIZQ8BzPMNcib8jyI2LnwxESPqa4LhmvuT7rUJ0pydiYirdmwodkfGhmYx-r4NaD5IyFG3TlzJTh9inv0cOH99_uPjX3Xz5-vnt331jOSWnAuK7vJKXMHMzohGAdcxacgZ7USqr66c4Njo_UDpyIA4BQ0PWWSdH1ZOz26O2Fd1kPM4wWtuUmvSQ_m_RTR-P1v53gH_UxnrXsuSJVe49ePxGk-H2FXPTss4VpulxJs36gikmphgrlF6hNMecE7o8MJXpzUZ_0xUW9uaiJ1NXFvytCvcPZQ9LZegi2GpPAFj1G_3-C36xRq7g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571928897</pqid></control><display><type>article</type><title>Real-time linear prediction of simultaneous and independent movements of two finger groups using an intracortical brain-machine interface</title><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nason, Samuel R. ; Mender, Matthew J. ; Vaskov, Alex K. ; Willsey, Matthew S. ; Ganesh Kumar, Nishant ; Kung, Theodore A. ; Patil, Parag G. ; Chestek, Cynthia A.</creator><creatorcontrib>Nason, Samuel R. ; Mender, Matthew J. ; Vaskov, Alex K. ; Willsey, Matthew S. ; Ganesh Kumar, Nishant ; Kung, Theodore A. ; Patil, Parag G. ; Chestek, Cynthia A.</creatorcontrib><description>Modern brain-machine interfaces can return function to people with paralysis, but current upper extremity brain-machine interfaces are unable to reproduce control of individuated finger movements. Here, for the first time, we present a real-time, high-speed, linear brain-machine interface in nonhuman primates that utilizes intracortical neural signals to bridge this gap. We created a non-prehensile task that systematically individuates two finger groups, the index finger and the middle-ring-small fingers combined. During online brain control, the ReFIT Kalman filter could predict individuated finger group movements with high performance. Next, training ridge regression decoders with individual movements was sufficient to predict untrained combined movements and vice versa. Finally, we compared the postural and movement tuning of finger-related cortical activity to find that individual cortical units simultaneously encode multiple behavioral dimensions. Our results suggest that linear decoders may be sufficient for brain-machine interfaces to execute high-dimensional tasks with the performance levels required for naturalistic neural prostheses.
[Display omitted]
•Simultaneous and independent brain-machine interface control of two finger groups•Cortical tuning between manipulandum and brain-machine interface use is consistent•Linear decoders can predict untrained finger movements•Cortical units simultaneously encode multiple kinematic dimensions
Nason et al. present a real-time brain-machine interface for controlling the simultaneous and independent movements of two groups of fingers in nonhuman primates. These techniques can be used to restore naturalistic control of paralyzed hands and enable a deeper understanding of how motor cortex represents dexterous finger behaviors.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2021.08.009</identifier><identifier>PMID: 34499856</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>brain-machine interface ; hand prosthesis ; intracortical ; linear decoder ; multiple simultaneous targets ; primary motor cortex</subject><ispartof>Neuron (Cambridge, Mass.), 2021-10, Vol.109 (19), p.3164-3177.e8</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-eaf3538112abadf66232fcefae5032f890893f7f4d1c7406bee69e35c286350d3</citedby><cites>FETCH-LOGICAL-c440t-eaf3538112abadf66232fcefae5032f890893f7f4d1c7406bee69e35c286350d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2021.08.009$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Nason, Samuel R.</creatorcontrib><creatorcontrib>Mender, Matthew J.</creatorcontrib><creatorcontrib>Vaskov, Alex K.</creatorcontrib><creatorcontrib>Willsey, Matthew S.</creatorcontrib><creatorcontrib>Ganesh Kumar, Nishant</creatorcontrib><creatorcontrib>Kung, Theodore A.</creatorcontrib><creatorcontrib>Patil, Parag G.</creatorcontrib><creatorcontrib>Chestek, Cynthia A.</creatorcontrib><title>Real-time linear prediction of simultaneous and independent movements of two finger groups using an intracortical brain-machine interface</title><title>Neuron (Cambridge, Mass.)</title><description>Modern brain-machine interfaces can return function to people with paralysis, but current upper extremity brain-machine interfaces are unable to reproduce control of individuated finger movements. Here, for the first time, we present a real-time, high-speed, linear brain-machine interface in nonhuman primates that utilizes intracortical neural signals to bridge this gap. We created a non-prehensile task that systematically individuates two finger groups, the index finger and the middle-ring-small fingers combined. During online brain control, the ReFIT Kalman filter could predict individuated finger group movements with high performance. Next, training ridge regression decoders with individual movements was sufficient to predict untrained combined movements and vice versa. Finally, we compared the postural and movement tuning of finger-related cortical activity to find that individual cortical units simultaneously encode multiple behavioral dimensions. Our results suggest that linear decoders may be sufficient for brain-machine interfaces to execute high-dimensional tasks with the performance levels required for naturalistic neural prostheses.
[Display omitted]
•Simultaneous and independent brain-machine interface control of two finger groups•Cortical tuning between manipulandum and brain-machine interface use is consistent•Linear decoders can predict untrained finger movements•Cortical units simultaneously encode multiple kinematic dimensions
Nason et al. present a real-time brain-machine interface for controlling the simultaneous and independent movements of two groups of fingers in nonhuman primates. These techniques can be used to restore naturalistic control of paralyzed hands and enable a deeper understanding of how motor cortex represents dexterous finger behaviors.</description><subject>brain-machine interface</subject><subject>hand prosthesis</subject><subject>intracortical</subject><subject>linear decoder</subject><subject>multiple simultaneous targets</subject><subject>primary motor cortex</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UU2PFCEQJcaNO87uP_DA0Uu3QNM0XEzMxq9kExPjnglDF7NMuqEFeow_wX8tndlovHipKlKv3ivqIfSKkpYSKt6c2gBriqFlhNGWyJYQ9QztKFFDw6lSz9GOSCUawYbuGr3M-UQI5b2iL9B1x7lSshc79OsrmKkpfgY8-QAm4SXB6G3xMeDocPbzOhUTIK4ZmzBiH0ZYoIZQ8BzPMNcib8jyI2LnwxESPqa4LhmvuT7rUJ0pydiYirdmwodkfGhmYx-r4NaD5IyFG3TlzJTh9inv0cOH99_uPjX3Xz5-vnt331jOSWnAuK7vJKXMHMzohGAdcxacgZ7USqr66c4Njo_UDpyIA4BQ0PWWSdH1ZOz26O2Fd1kPM4wWtuUmvSQ_m_RTR-P1v53gH_UxnrXsuSJVe49ePxGk-H2FXPTss4VpulxJs36gikmphgrlF6hNMecE7o8MJXpzUZ_0xUW9uaiJ1NXFvytCvcPZQ9LZegi2GpPAFj1G_3-C36xRq7g</recordid><startdate>20211006</startdate><enddate>20211006</enddate><creator>Nason, Samuel R.</creator><creator>Mender, Matthew J.</creator><creator>Vaskov, Alex K.</creator><creator>Willsey, Matthew S.</creator><creator>Ganesh Kumar, Nishant</creator><creator>Kung, Theodore A.</creator><creator>Patil, Parag G.</creator><creator>Chestek, Cynthia A.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20211006</creationdate><title>Real-time linear prediction of simultaneous and independent movements of two finger groups using an intracortical brain-machine interface</title><author>Nason, Samuel R. ; Mender, Matthew J. ; Vaskov, Alex K. ; Willsey, Matthew S. ; Ganesh Kumar, Nishant ; Kung, Theodore A. ; Patil, Parag G. ; Chestek, Cynthia A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-eaf3538112abadf66232fcefae5032f890893f7f4d1c7406bee69e35c286350d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>brain-machine interface</topic><topic>hand prosthesis</topic><topic>intracortical</topic><topic>linear decoder</topic><topic>multiple simultaneous targets</topic><topic>primary motor cortex</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nason, Samuel R.</creatorcontrib><creatorcontrib>Mender, Matthew J.</creatorcontrib><creatorcontrib>Vaskov, Alex K.</creatorcontrib><creatorcontrib>Willsey, Matthew S.</creatorcontrib><creatorcontrib>Ganesh Kumar, Nishant</creatorcontrib><creatorcontrib>Kung, Theodore A.</creatorcontrib><creatorcontrib>Patil, Parag G.</creatorcontrib><creatorcontrib>Chestek, Cynthia A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nason, Samuel R.</au><au>Mender, Matthew J.</au><au>Vaskov, Alex K.</au><au>Willsey, Matthew S.</au><au>Ganesh Kumar, Nishant</au><au>Kung, Theodore A.</au><au>Patil, Parag G.</au><au>Chestek, Cynthia A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time linear prediction of simultaneous and independent movements of two finger groups using an intracortical brain-machine interface</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><date>2021-10-06</date><risdate>2021</risdate><volume>109</volume><issue>19</issue><spage>3164</spage><epage>3177.e8</epage><pages>3164-3177.e8</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Modern brain-machine interfaces can return function to people with paralysis, but current upper extremity brain-machine interfaces are unable to reproduce control of individuated finger movements. Here, for the first time, we present a real-time, high-speed, linear brain-machine interface in nonhuman primates that utilizes intracortical neural signals to bridge this gap. We created a non-prehensile task that systematically individuates two finger groups, the index finger and the middle-ring-small fingers combined. During online brain control, the ReFIT Kalman filter could predict individuated finger group movements with high performance. Next, training ridge regression decoders with individual movements was sufficient to predict untrained combined movements and vice versa. Finally, we compared the postural and movement tuning of finger-related cortical activity to find that individual cortical units simultaneously encode multiple behavioral dimensions. Our results suggest that linear decoders may be sufficient for brain-machine interfaces to execute high-dimensional tasks with the performance levels required for naturalistic neural prostheses.
[Display omitted]
•Simultaneous and independent brain-machine interface control of two finger groups•Cortical tuning between manipulandum and brain-machine interface use is consistent•Linear decoders can predict untrained finger movements•Cortical units simultaneously encode multiple kinematic dimensions
Nason et al. present a real-time brain-machine interface for controlling the simultaneous and independent movements of two groups of fingers in nonhuman primates. These techniques can be used to restore naturalistic control of paralyzed hands and enable a deeper understanding of how motor cortex represents dexterous finger behaviors.</abstract><pub>Elsevier Inc</pub><pmid>34499856</pmid><doi>10.1016/j.neuron.2021.08.009</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2021-10, Vol.109 (19), p.3164-3177.e8 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8549035 |
source | Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | brain-machine interface hand prosthesis intracortical linear decoder multiple simultaneous targets primary motor cortex |
title | Real-time linear prediction of simultaneous and independent movements of two finger groups using an intracortical brain-machine interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20linear%20prediction%20of%20simultaneous%20and%20independent%20movements%20of%20two%20finger%20groups%20using%20an%20intracortical%20brain-machine%20interface&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Nason,%20Samuel%20R.&rft.date=2021-10-06&rft.volume=109&rft.issue=19&rft.spage=3164&rft.epage=3177.e8&rft.pages=3164-3177.e8&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2021.08.009&rft_dat=%3Cproquest_pubme%3E2571928897%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571928897&rft_id=info:pmid/34499856&rft_els_id=S0896627321006048&rfr_iscdi=true |