3D Printing of Thermoplastic Elastomers: Role of the Chemical Composition and Printing Parameters in the Production of Parts with Controlled Energy Absorption and Damping Capacity
Additive manufacturing (AM) is a disruptive technology that enables one to manufacture complex structures reducing both time and manufacturing cost. Among the materials commonly used for AM, thermoplastic elastomers (TPE) are of high interest due to their energy absorption capacity, energy efficienc...
Gespeichert in:
Veröffentlicht in: | Polymers 2021-10, Vol.13 (20), p.3551, Article 3551 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | 3551 |
container_title | Polymers |
container_volume | 13 |
creator | Leon-Calero, Marina Reyburn Vales, Sara Catherine Marcos-Fernandez, Angel Rodriguez-Hernandez, Juan |
description | Additive manufacturing (AM) is a disruptive technology that enables one to manufacture complex structures reducing both time and manufacturing cost. Among the materials commonly used for AM, thermoplastic elastomers (TPE) are of high interest due to their energy absorption capacity, energy efficiency, cushion factor or damping capacity. Previous investigations have exclusively focused on the optimization of the printing parameters of commercial TPE filaments and the structures to analyse the mechanical properties of the 3D printed parts. In the present paper, the chemical, thermal and mechanical properties for a wide range of commercial thermoplastic polyurethanes (TPU) filaments were investigated. For this purpose, TGA, DSC, H-1-NMR and filament tensile strength experiments were carried out in order to determine the materials characteristics. In addition, compression tests have been carried out to tailor the mechanical properties depending on the 3D printing parameters such as: infill density (10, 20, 50, 80 and 100%) and infill pattern (gyroid, honeycomb and grid). The compression tests were also employed to calculate the specific energy absorption (SEA) and specific damping capacity (SDC) of the materials in order to establish the role of the chemical composition and the geometrical characteristics (infill density and type of infill pattern) on the final properties of the printed part. As a result, optimal SEA and SDC performances were obtained for a honeycomb pattern at a 50% of infill density. |
doi_str_mv | 10.3390/polym13203551 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8540301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584782970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-547c34e90696632b23d2fd75e8a938863137af42b68269757e164a4707a59bc03</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rLupfcBbwQZzVeTxgth6Y4fsOAg63VJ09OZLG1Sk9Rlfpd_0HRmGV2vzE0C53mfnIRTFC8JfsuYwu8mP-xHwihmZUmeFOcUS7biTOCnf53PissY73BevBSCyOfFGeOiKhnB58Uvdo02wbpk3Rb5Ht3uIIx-GnRM1qD1svsRQnyPvvkBFiLtANU7GK3RA6r9OPlok_UOadf9UW100COknETWHTKb4LvZHMhsyfUU0b1Nu-xwKfhhgA6tHYTtHl210YfpJL3W47Q4az1pY9P-RfGs10OEy4f9ovj-cX1bf17dfP30pb66WRmmaFqVXBrGQWGhhGC0payjfSdLqLRiVSUYYVL3nLaiokLJUgIRXHOJpS5VazC7KD4cvdPcjtAZyH3qoZmCHXXYN17b5nHF2V2z9T-bquSYYZIFrx8Ewf-YIaZmtNHAMGgHfo4NLSsuK6rkcterf9A7PweXn3egeMWUUplaHSkTfIwB-lMzBDfLRDSPJiLz1ZG_h9b30VhwBk6ZPBGScEIFXYaD1Dbp5c9rP7uUo2_-P8p-A9nIyyE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584483999</pqid></control><display><type>article</type><title>3D Printing of Thermoplastic Elastomers: Role of the Chemical Composition and Printing Parameters in the Production of Parts with Controlled Energy Absorption and Damping Capacity</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Leon-Calero, Marina ; Reyburn Vales, Sara Catherine ; Marcos-Fernandez, Angel ; Rodriguez-Hernandez, Juan</creator><creatorcontrib>Leon-Calero, Marina ; Reyburn Vales, Sara Catherine ; Marcos-Fernandez, Angel ; Rodriguez-Hernandez, Juan</creatorcontrib><description>Additive manufacturing (AM) is a disruptive technology that enables one to manufacture complex structures reducing both time and manufacturing cost. Among the materials commonly used for AM, thermoplastic elastomers (TPE) are of high interest due to their energy absorption capacity, energy efficiency, cushion factor or damping capacity. Previous investigations have exclusively focused on the optimization of the printing parameters of commercial TPE filaments and the structures to analyse the mechanical properties of the 3D printed parts. In the present paper, the chemical, thermal and mechanical properties for a wide range of commercial thermoplastic polyurethanes (TPU) filaments were investigated. For this purpose, TGA, DSC, H-1-NMR and filament tensile strength experiments were carried out in order to determine the materials characteristics. In addition, compression tests have been carried out to tailor the mechanical properties depending on the 3D printing parameters such as: infill density (10, 20, 50, 80 and 100%) and infill pattern (gyroid, honeycomb and grid). The compression tests were also employed to calculate the specific energy absorption (SEA) and specific damping capacity (SDC) of the materials in order to establish the role of the chemical composition and the geometrical characteristics (infill density and type of infill pattern) on the final properties of the printed part. As a result, optimal SEA and SDC performances were obtained for a honeycomb pattern at a 50% of infill density.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym13203551</identifier><identifier>PMID: 34685310</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>3-D printers ; Chemical composition ; Civil engineering ; Compression tests ; Cushions ; Damping capacity ; Density ; Energy ; Energy absorption ; Filaments ; Mechanical properties ; NMR ; Nuclear magnetic resonance ; Optimization ; Parameters ; Physical Sciences ; Polymer Science ; Polymers ; Production costs ; Science & Technology ; Specific damping capacity ; Tensile strength ; Thermodynamic properties ; Thermogravimetric analysis ; Thermoplastic elastomers ; Three dimensional printing ; Urethane thermoplastic elastomers</subject><ispartof>Polymers, 2021-10, Vol.13 (20), p.3551, Article 3551</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>40</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000714126200001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c392t-547c34e90696632b23d2fd75e8a938863137af42b68269757e164a4707a59bc03</citedby><cites>FETCH-LOGICAL-c392t-547c34e90696632b23d2fd75e8a938863137af42b68269757e164a4707a59bc03</cites><orcidid>0000-0001-9004-9868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540301/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540301/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27928,27929,39262,53795,53797</link.rule.ids></links><search><creatorcontrib>Leon-Calero, Marina</creatorcontrib><creatorcontrib>Reyburn Vales, Sara Catherine</creatorcontrib><creatorcontrib>Marcos-Fernandez, Angel</creatorcontrib><creatorcontrib>Rodriguez-Hernandez, Juan</creatorcontrib><title>3D Printing of Thermoplastic Elastomers: Role of the Chemical Composition and Printing Parameters in the Production of Parts with Controlled Energy Absorption and Damping Capacity</title><title>Polymers</title><addtitle>POLYMERS-BASEL</addtitle><description>Additive manufacturing (AM) is a disruptive technology that enables one to manufacture complex structures reducing both time and manufacturing cost. Among the materials commonly used for AM, thermoplastic elastomers (TPE) are of high interest due to their energy absorption capacity, energy efficiency, cushion factor or damping capacity. Previous investigations have exclusively focused on the optimization of the printing parameters of commercial TPE filaments and the structures to analyse the mechanical properties of the 3D printed parts. In the present paper, the chemical, thermal and mechanical properties for a wide range of commercial thermoplastic polyurethanes (TPU) filaments were investigated. For this purpose, TGA, DSC, H-1-NMR and filament tensile strength experiments were carried out in order to determine the materials characteristics. In addition, compression tests have been carried out to tailor the mechanical properties depending on the 3D printing parameters such as: infill density (10, 20, 50, 80 and 100%) and infill pattern (gyroid, honeycomb and grid). The compression tests were also employed to calculate the specific energy absorption (SEA) and specific damping capacity (SDC) of the materials in order to establish the role of the chemical composition and the geometrical characteristics (infill density and type of infill pattern) on the final properties of the printed part. As a result, optimal SEA and SDC performances were obtained for a honeycomb pattern at a 50% of infill density.</description><subject>3-D printers</subject><subject>Chemical composition</subject><subject>Civil engineering</subject><subject>Compression tests</subject><subject>Cushions</subject><subject>Damping capacity</subject><subject>Density</subject><subject>Energy</subject><subject>Energy absorption</subject><subject>Filaments</subject><subject>Mechanical properties</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Physical Sciences</subject><subject>Polymer Science</subject><subject>Polymers</subject><subject>Production costs</subject><subject>Science & Technology</subject><subject>Specific damping capacity</subject><subject>Tensile strength</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><subject>Thermoplastic elastomers</subject><subject>Three dimensional printing</subject><subject>Urethane thermoplastic elastomers</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkl2L1DAUhoso7rLupfcBbwQZzVeTxgth6Y4fsOAg63VJ09OZLG1Sk9Rlfpd_0HRmGV2vzE0C53mfnIRTFC8JfsuYwu8mP-xHwihmZUmeFOcUS7biTOCnf53PissY73BevBSCyOfFGeOiKhnB58Uvdo02wbpk3Rb5Ht3uIIx-GnRM1qD1svsRQnyPvvkBFiLtANU7GK3RA6r9OPlok_UOadf9UW100COknETWHTKb4LvZHMhsyfUU0b1Nu-xwKfhhgA6tHYTtHl210YfpJL3W47Q4az1pY9P-RfGs10OEy4f9ovj-cX1bf17dfP30pb66WRmmaFqVXBrGQWGhhGC0payjfSdLqLRiVSUYYVL3nLaiokLJUgIRXHOJpS5VazC7KD4cvdPcjtAZyH3qoZmCHXXYN17b5nHF2V2z9T-bquSYYZIFrx8Ewf-YIaZmtNHAMGgHfo4NLSsuK6rkcterf9A7PweXn3egeMWUUplaHSkTfIwB-lMzBDfLRDSPJiLz1ZG_h9b30VhwBk6ZPBGScEIFXYaD1Dbp5c9rP7uUo2_-P8p-A9nIyyE</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Leon-Calero, Marina</creator><creator>Reyburn Vales, Sara Catherine</creator><creator>Marcos-Fernandez, Angel</creator><creator>Rodriguez-Hernandez, Juan</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9004-9868</orcidid></search><sort><creationdate>20211015</creationdate><title>3D Printing of Thermoplastic Elastomers: Role of the Chemical Composition and Printing Parameters in the Production of Parts with Controlled Energy Absorption and Damping Capacity</title><author>Leon-Calero, Marina ; Reyburn Vales, Sara Catherine ; Marcos-Fernandez, Angel ; Rodriguez-Hernandez, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-547c34e90696632b23d2fd75e8a938863137af42b68269757e164a4707a59bc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3-D printers</topic><topic>Chemical composition</topic><topic>Civil engineering</topic><topic>Compression tests</topic><topic>Cushions</topic><topic>Damping capacity</topic><topic>Density</topic><topic>Energy</topic><topic>Energy absorption</topic><topic>Filaments</topic><topic>Mechanical properties</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Physical Sciences</topic><topic>Polymer Science</topic><topic>Polymers</topic><topic>Production costs</topic><topic>Science & Technology</topic><topic>Specific damping capacity</topic><topic>Tensile strength</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><topic>Thermoplastic elastomers</topic><topic>Three dimensional printing</topic><topic>Urethane thermoplastic elastomers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leon-Calero, Marina</creatorcontrib><creatorcontrib>Reyburn Vales, Sara Catherine</creatorcontrib><creatorcontrib>Marcos-Fernandez, Angel</creatorcontrib><creatorcontrib>Rodriguez-Hernandez, Juan</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leon-Calero, Marina</au><au>Reyburn Vales, Sara Catherine</au><au>Marcos-Fernandez, Angel</au><au>Rodriguez-Hernandez, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Printing of Thermoplastic Elastomers: Role of the Chemical Composition and Printing Parameters in the Production of Parts with Controlled Energy Absorption and Damping Capacity</atitle><jtitle>Polymers</jtitle><stitle>POLYMERS-BASEL</stitle><date>2021-10-15</date><risdate>2021</risdate><volume>13</volume><issue>20</issue><spage>3551</spage><pages>3551-</pages><artnum>3551</artnum><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Additive manufacturing (AM) is a disruptive technology that enables one to manufacture complex structures reducing both time and manufacturing cost. Among the materials commonly used for AM, thermoplastic elastomers (TPE) are of high interest due to their energy absorption capacity, energy efficiency, cushion factor or damping capacity. Previous investigations have exclusively focused on the optimization of the printing parameters of commercial TPE filaments and the structures to analyse the mechanical properties of the 3D printed parts. In the present paper, the chemical, thermal and mechanical properties for a wide range of commercial thermoplastic polyurethanes (TPU) filaments were investigated. For this purpose, TGA, DSC, H-1-NMR and filament tensile strength experiments were carried out in order to determine the materials characteristics. In addition, compression tests have been carried out to tailor the mechanical properties depending on the 3D printing parameters such as: infill density (10, 20, 50, 80 and 100%) and infill pattern (gyroid, honeycomb and grid). The compression tests were also employed to calculate the specific energy absorption (SEA) and specific damping capacity (SDC) of the materials in order to establish the role of the chemical composition and the geometrical characteristics (infill density and type of infill pattern) on the final properties of the printed part. As a result, optimal SEA and SDC performances were obtained for a honeycomb pattern at a 50% of infill density.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>34685310</pmid><doi>10.3390/polym13203551</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-9004-9868</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2021-10, Vol.13 (20), p.3551, Article 3551 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8540301 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 3-D printers Chemical composition Civil engineering Compression tests Cushions Damping capacity Density Energy Energy absorption Filaments Mechanical properties NMR Nuclear magnetic resonance Optimization Parameters Physical Sciences Polymer Science Polymers Production costs Science & Technology Specific damping capacity Tensile strength Thermodynamic properties Thermogravimetric analysis Thermoplastic elastomers Three dimensional printing Urethane thermoplastic elastomers |
title | 3D Printing of Thermoplastic Elastomers: Role of the Chemical Composition and Printing Parameters in the Production of Parts with Controlled Energy Absorption and Damping Capacity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A45%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Printing%20of%20Thermoplastic%20Elastomers:%20Role%20of%20the%20Chemical%20Composition%20and%20Printing%20Parameters%20in%20the%20Production%20of%20Parts%20with%20Controlled%20Energy%20Absorption%20and%20Damping%20Capacity&rft.jtitle=Polymers&rft.au=Leon-Calero,%20Marina&rft.date=2021-10-15&rft.volume=13&rft.issue=20&rft.spage=3551&rft.pages=3551-&rft.artnum=3551&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym13203551&rft_dat=%3Cproquest_pubme%3E2584782970%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584483999&rft_id=info:pmid/34685310&rfr_iscdi=true |