3D Printing of Thermoplastic Elastomers: Role of the Chemical Composition and Printing Parameters in the Production of Parts with Controlled Energy Absorption and Damping Capacity

Additive manufacturing (AM) is a disruptive technology that enables one to manufacture complex structures reducing both time and manufacturing cost. Among the materials commonly used for AM, thermoplastic elastomers (TPE) are of high interest due to their energy absorption capacity, energy efficienc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2021-10, Vol.13 (20), p.3551, Article 3551
Hauptverfasser: Leon-Calero, Marina, Reyburn Vales, Sara Catherine, Marcos-Fernandez, Angel, Rodriguez-Hernandez, Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page 3551
container_title Polymers
container_volume 13
creator Leon-Calero, Marina
Reyburn Vales, Sara Catherine
Marcos-Fernandez, Angel
Rodriguez-Hernandez, Juan
description Additive manufacturing (AM) is a disruptive technology that enables one to manufacture complex structures reducing both time and manufacturing cost. Among the materials commonly used for AM, thermoplastic elastomers (TPE) are of high interest due to their energy absorption capacity, energy efficiency, cushion factor or damping capacity. Previous investigations have exclusively focused on the optimization of the printing parameters of commercial TPE filaments and the structures to analyse the mechanical properties of the 3D printed parts. In the present paper, the chemical, thermal and mechanical properties for a wide range of commercial thermoplastic polyurethanes (TPU) filaments were investigated. For this purpose, TGA, DSC, H-1-NMR and filament tensile strength experiments were carried out in order to determine the materials characteristics. In addition, compression tests have been carried out to tailor the mechanical properties depending on the 3D printing parameters such as: infill density (10, 20, 50, 80 and 100%) and infill pattern (gyroid, honeycomb and grid). The compression tests were also employed to calculate the specific energy absorption (SEA) and specific damping capacity (SDC) of the materials in order to establish the role of the chemical composition and the geometrical characteristics (infill density and type of infill pattern) on the final properties of the printed part. As a result, optimal SEA and SDC performances were obtained for a honeycomb pattern at a 50% of infill density.
doi_str_mv 10.3390/polym13203551
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8540301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584782970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-547c34e90696632b23d2fd75e8a938863137af42b68269757e164a4707a59bc03</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rLupfcBbwQZzVeTxgth6Y4fsOAg63VJ09OZLG1Sk9Rlfpd_0HRmGV2vzE0C53mfnIRTFC8JfsuYwu8mP-xHwihmZUmeFOcUS7biTOCnf53PissY73BevBSCyOfFGeOiKhnB58Uvdo02wbpk3Rb5Ht3uIIx-GnRM1qD1svsRQnyPvvkBFiLtANU7GK3RA6r9OPlok_UOadf9UW100COknETWHTKb4LvZHMhsyfUU0b1Nu-xwKfhhgA6tHYTtHl210YfpJL3W47Q4az1pY9P-RfGs10OEy4f9ovj-cX1bf17dfP30pb66WRmmaFqVXBrGQWGhhGC0payjfSdLqLRiVSUYYVL3nLaiokLJUgIRXHOJpS5VazC7KD4cvdPcjtAZyH3qoZmCHXXYN17b5nHF2V2z9T-bquSYYZIFrx8Ewf-YIaZmtNHAMGgHfo4NLSsuK6rkcterf9A7PweXn3egeMWUUplaHSkTfIwB-lMzBDfLRDSPJiLz1ZG_h9b30VhwBk6ZPBGScEIFXYaD1Dbp5c9rP7uUo2_-P8p-A9nIyyE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584483999</pqid></control><display><type>article</type><title>3D Printing of Thermoplastic Elastomers: Role of the Chemical Composition and Printing Parameters in the Production of Parts with Controlled Energy Absorption and Damping Capacity</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Leon-Calero, Marina ; Reyburn Vales, Sara Catherine ; Marcos-Fernandez, Angel ; Rodriguez-Hernandez, Juan</creator><creatorcontrib>Leon-Calero, Marina ; Reyburn Vales, Sara Catherine ; Marcos-Fernandez, Angel ; Rodriguez-Hernandez, Juan</creatorcontrib><description>Additive manufacturing (AM) is a disruptive technology that enables one to manufacture complex structures reducing both time and manufacturing cost. Among the materials commonly used for AM, thermoplastic elastomers (TPE) are of high interest due to their energy absorption capacity, energy efficiency, cushion factor or damping capacity. Previous investigations have exclusively focused on the optimization of the printing parameters of commercial TPE filaments and the structures to analyse the mechanical properties of the 3D printed parts. In the present paper, the chemical, thermal and mechanical properties for a wide range of commercial thermoplastic polyurethanes (TPU) filaments were investigated. For this purpose, TGA, DSC, H-1-NMR and filament tensile strength experiments were carried out in order to determine the materials characteristics. In addition, compression tests have been carried out to tailor the mechanical properties depending on the 3D printing parameters such as: infill density (10, 20, 50, 80 and 100%) and infill pattern (gyroid, honeycomb and grid). The compression tests were also employed to calculate the specific energy absorption (SEA) and specific damping capacity (SDC) of the materials in order to establish the role of the chemical composition and the geometrical characteristics (infill density and type of infill pattern) on the final properties of the printed part. As a result, optimal SEA and SDC performances were obtained for a honeycomb pattern at a 50% of infill density.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym13203551</identifier><identifier>PMID: 34685310</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>3-D printers ; Chemical composition ; Civil engineering ; Compression tests ; Cushions ; Damping capacity ; Density ; Energy ; Energy absorption ; Filaments ; Mechanical properties ; NMR ; Nuclear magnetic resonance ; Optimization ; Parameters ; Physical Sciences ; Polymer Science ; Polymers ; Production costs ; Science &amp; Technology ; Specific damping capacity ; Tensile strength ; Thermodynamic properties ; Thermogravimetric analysis ; Thermoplastic elastomers ; Three dimensional printing ; Urethane thermoplastic elastomers</subject><ispartof>Polymers, 2021-10, Vol.13 (20), p.3551, Article 3551</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>40</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000714126200001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c392t-547c34e90696632b23d2fd75e8a938863137af42b68269757e164a4707a59bc03</citedby><cites>FETCH-LOGICAL-c392t-547c34e90696632b23d2fd75e8a938863137af42b68269757e164a4707a59bc03</cites><orcidid>0000-0001-9004-9868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540301/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540301/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27928,27929,39262,53795,53797</link.rule.ids></links><search><creatorcontrib>Leon-Calero, Marina</creatorcontrib><creatorcontrib>Reyburn Vales, Sara Catherine</creatorcontrib><creatorcontrib>Marcos-Fernandez, Angel</creatorcontrib><creatorcontrib>Rodriguez-Hernandez, Juan</creatorcontrib><title>3D Printing of Thermoplastic Elastomers: Role of the Chemical Composition and Printing Parameters in the Production of Parts with Controlled Energy Absorption and Damping Capacity</title><title>Polymers</title><addtitle>POLYMERS-BASEL</addtitle><description>Additive manufacturing (AM) is a disruptive technology that enables one to manufacture complex structures reducing both time and manufacturing cost. Among the materials commonly used for AM, thermoplastic elastomers (TPE) are of high interest due to their energy absorption capacity, energy efficiency, cushion factor or damping capacity. Previous investigations have exclusively focused on the optimization of the printing parameters of commercial TPE filaments and the structures to analyse the mechanical properties of the 3D printed parts. In the present paper, the chemical, thermal and mechanical properties for a wide range of commercial thermoplastic polyurethanes (TPU) filaments were investigated. For this purpose, TGA, DSC, H-1-NMR and filament tensile strength experiments were carried out in order to determine the materials characteristics. In addition, compression tests have been carried out to tailor the mechanical properties depending on the 3D printing parameters such as: infill density (10, 20, 50, 80 and 100%) and infill pattern (gyroid, honeycomb and grid). The compression tests were also employed to calculate the specific energy absorption (SEA) and specific damping capacity (SDC) of the materials in order to establish the role of the chemical composition and the geometrical characteristics (infill density and type of infill pattern) on the final properties of the printed part. As a result, optimal SEA and SDC performances were obtained for a honeycomb pattern at a 50% of infill density.</description><subject>3-D printers</subject><subject>Chemical composition</subject><subject>Civil engineering</subject><subject>Compression tests</subject><subject>Cushions</subject><subject>Damping capacity</subject><subject>Density</subject><subject>Energy</subject><subject>Energy absorption</subject><subject>Filaments</subject><subject>Mechanical properties</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Physical Sciences</subject><subject>Polymer Science</subject><subject>Polymers</subject><subject>Production costs</subject><subject>Science &amp; Technology</subject><subject>Specific damping capacity</subject><subject>Tensile strength</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><subject>Thermoplastic elastomers</subject><subject>Three dimensional printing</subject><subject>Urethane thermoplastic elastomers</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkl2L1DAUhoso7rLupfcBbwQZzVeTxgth6Y4fsOAg63VJ09OZLG1Sk9Rlfpd_0HRmGV2vzE0C53mfnIRTFC8JfsuYwu8mP-xHwihmZUmeFOcUS7biTOCnf53PissY73BevBSCyOfFGeOiKhnB58Uvdo02wbpk3Rb5Ht3uIIx-GnRM1qD1svsRQnyPvvkBFiLtANU7GK3RA6r9OPlok_UOadf9UW100COknETWHTKb4LvZHMhsyfUU0b1Nu-xwKfhhgA6tHYTtHl210YfpJL3W47Q4az1pY9P-RfGs10OEy4f9ovj-cX1bf17dfP30pb66WRmmaFqVXBrGQWGhhGC0payjfSdLqLRiVSUYYVL3nLaiokLJUgIRXHOJpS5VazC7KD4cvdPcjtAZyH3qoZmCHXXYN17b5nHF2V2z9T-bquSYYZIFrx8Ewf-YIaZmtNHAMGgHfo4NLSsuK6rkcterf9A7PweXn3egeMWUUplaHSkTfIwB-lMzBDfLRDSPJiLz1ZG_h9b30VhwBk6ZPBGScEIFXYaD1Dbp5c9rP7uUo2_-P8p-A9nIyyE</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Leon-Calero, Marina</creator><creator>Reyburn Vales, Sara Catherine</creator><creator>Marcos-Fernandez, Angel</creator><creator>Rodriguez-Hernandez, Juan</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9004-9868</orcidid></search><sort><creationdate>20211015</creationdate><title>3D Printing of Thermoplastic Elastomers: Role of the Chemical Composition and Printing Parameters in the Production of Parts with Controlled Energy Absorption and Damping Capacity</title><author>Leon-Calero, Marina ; Reyburn Vales, Sara Catherine ; Marcos-Fernandez, Angel ; Rodriguez-Hernandez, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-547c34e90696632b23d2fd75e8a938863137af42b68269757e164a4707a59bc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3-D printers</topic><topic>Chemical composition</topic><topic>Civil engineering</topic><topic>Compression tests</topic><topic>Cushions</topic><topic>Damping capacity</topic><topic>Density</topic><topic>Energy</topic><topic>Energy absorption</topic><topic>Filaments</topic><topic>Mechanical properties</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Physical Sciences</topic><topic>Polymer Science</topic><topic>Polymers</topic><topic>Production costs</topic><topic>Science &amp; Technology</topic><topic>Specific damping capacity</topic><topic>Tensile strength</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><topic>Thermoplastic elastomers</topic><topic>Three dimensional printing</topic><topic>Urethane thermoplastic elastomers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leon-Calero, Marina</creatorcontrib><creatorcontrib>Reyburn Vales, Sara Catherine</creatorcontrib><creatorcontrib>Marcos-Fernandez, Angel</creatorcontrib><creatorcontrib>Rodriguez-Hernandez, Juan</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leon-Calero, Marina</au><au>Reyburn Vales, Sara Catherine</au><au>Marcos-Fernandez, Angel</au><au>Rodriguez-Hernandez, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Printing of Thermoplastic Elastomers: Role of the Chemical Composition and Printing Parameters in the Production of Parts with Controlled Energy Absorption and Damping Capacity</atitle><jtitle>Polymers</jtitle><stitle>POLYMERS-BASEL</stitle><date>2021-10-15</date><risdate>2021</risdate><volume>13</volume><issue>20</issue><spage>3551</spage><pages>3551-</pages><artnum>3551</artnum><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Additive manufacturing (AM) is a disruptive technology that enables one to manufacture complex structures reducing both time and manufacturing cost. Among the materials commonly used for AM, thermoplastic elastomers (TPE) are of high interest due to their energy absorption capacity, energy efficiency, cushion factor or damping capacity. Previous investigations have exclusively focused on the optimization of the printing parameters of commercial TPE filaments and the structures to analyse the mechanical properties of the 3D printed parts. In the present paper, the chemical, thermal and mechanical properties for a wide range of commercial thermoplastic polyurethanes (TPU) filaments were investigated. For this purpose, TGA, DSC, H-1-NMR and filament tensile strength experiments were carried out in order to determine the materials characteristics. In addition, compression tests have been carried out to tailor the mechanical properties depending on the 3D printing parameters such as: infill density (10, 20, 50, 80 and 100%) and infill pattern (gyroid, honeycomb and grid). The compression tests were also employed to calculate the specific energy absorption (SEA) and specific damping capacity (SDC) of the materials in order to establish the role of the chemical composition and the geometrical characteristics (infill density and type of infill pattern) on the final properties of the printed part. As a result, optimal SEA and SDC performances were obtained for a honeycomb pattern at a 50% of infill density.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>34685310</pmid><doi>10.3390/polym13203551</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-9004-9868</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2021-10, Vol.13 (20), p.3551, Article 3551
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8540301
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 3-D printers
Chemical composition
Civil engineering
Compression tests
Cushions
Damping capacity
Density
Energy
Energy absorption
Filaments
Mechanical properties
NMR
Nuclear magnetic resonance
Optimization
Parameters
Physical Sciences
Polymer Science
Polymers
Production costs
Science & Technology
Specific damping capacity
Tensile strength
Thermodynamic properties
Thermogravimetric analysis
Thermoplastic elastomers
Three dimensional printing
Urethane thermoplastic elastomers
title 3D Printing of Thermoplastic Elastomers: Role of the Chemical Composition and Printing Parameters in the Production of Parts with Controlled Energy Absorption and Damping Capacity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A45%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Printing%20of%20Thermoplastic%20Elastomers:%20Role%20of%20the%20Chemical%20Composition%20and%20Printing%20Parameters%20in%20the%20Production%20of%20Parts%20with%20Controlled%20Energy%20Absorption%20and%20Damping%20Capacity&rft.jtitle=Polymers&rft.au=Leon-Calero,%20Marina&rft.date=2021-10-15&rft.volume=13&rft.issue=20&rft.spage=3551&rft.pages=3551-&rft.artnum=3551&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym13203551&rft_dat=%3Cproquest_pubme%3E2584782970%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584483999&rft_id=info:pmid/34685310&rfr_iscdi=true