Oxidative Stress Induced by Reactive Oxygen Species (ROS) and NADPH Oxidase 4 (NOX4) in the Pathogenesis of the Fibrotic Process in Systemic Sclerosis: A Promising Therapeutic Target

Numerous clinical and research investigations conducted during the last two decades have implicated excessive oxidative stress caused by high levels of reactive oxygen species (ROS) in the development of the severe and frequently progressive fibrotic process in Systemic Sclerosis (SSc). The role of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical medicine 2021-10, Vol.10 (20), p.4791
Hauptverfasser: Piera-Velazquez, Sonsoles, Jimenez, Sergio A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page 4791
container_title Journal of clinical medicine
container_volume 10
creator Piera-Velazquez, Sonsoles
Jimenez, Sergio A.
description Numerous clinical and research investigations conducted during the last two decades have implicated excessive oxidative stress caused by high levels of reactive oxygen species (ROS) in the development of the severe and frequently progressive fibrotic process in Systemic Sclerosis (SSc). The role of excessive oxidative stress in SSc pathogenesis has been supported by the demonstration of increased levels of numerous biomarkers, indicative of cellular and molecular oxidative damage in serum, plasma, and other biological fluids from SSc patients, and by the demonstration of elevated production of ROS by various cell types involved in the SSc fibrotic process. However, the precise mechanisms mediating oxidative stress development in SSc and its pathogenetic effects have not been fully elucidated. The participation of the NADPH oxidase NOX4, has been suggested and experimentally supported by the demonstration that SSc dermal fibroblasts display constitutively increased NOX4 expression and that reduction or abrogation of NOX4 effects decreased ROS production and the expression of genes encoding fibrotic proteins. Furthermore, NOX4-stimulated ROS production may be involved in the development of certain endothelial and vascular abnormalities and may even participate in the generation of SSc-specific autoantibodies. Collectively, these observations suggest NOX4 as a novel therapeutic target for SSc.
doi_str_mv 10.3390/jcm10204791
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8539594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584397829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-a20657545ca5b2b299e994a8a6c6d161f5577d5ec912c6464ba2e69636073ec73</originalsourceid><addsrcrecordid>eNpdks1qGzEQx5fS0oQ0p76AoBeH4larz1UPBZM2HxCyJnaht0WrHdsyuytH0ob4xfp80TqhpJ2Lhpnf_EcjTZZ9zPEXShX-ujVdjglmUuVvsmOCpZxiWtC3r_yj7DSELU5WFIzk8n12RJkoiMrZcfanfLSNjvYB0CJ6CAFd981goEH1Ht2BNodU-bhfQ48WOzAWAprclYszpPsG3c5-zK_QQSMAYmhyW_5mZ8j2KG4AzXXcuFQIwQbkVofYha29i9aguXdm7JfYxT5E6FJsYVrwLtHf0GwEOhtsv0bLDXi9g2EsW2q_hvghe7fSbYDTl_Mk-3Xxc3l-Nb0pL6_PZzdTQwsRp5pgwSVn3Ghek5ooBUoxXWhhRJOLfMW5lA0Ho3JiBBOs1gSEElRgScFIepJ9f9bdDXUHjYE-et1WO2877feV07b6N9PbTbV2D1XBqeKKJYHJi4B39wOEWKWZDLSt7sENoSK8YLJgmI_op__QrRt8n8Y7UFTJ9GeJ-vxMmfRQwcPq72VyXI0rUb1aCfoEIbunxQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584397829</pqid></control><display><type>article</type><title>Oxidative Stress Induced by Reactive Oxygen Species (ROS) and NADPH Oxidase 4 (NOX4) in the Pathogenesis of the Fibrotic Process in Systemic Sclerosis: A Promising Therapeutic Target</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Piera-Velazquez, Sonsoles ; Jimenez, Sergio A.</creator><creatorcontrib>Piera-Velazquez, Sonsoles ; Jimenez, Sergio A.</creatorcontrib><description>Numerous clinical and research investigations conducted during the last two decades have implicated excessive oxidative stress caused by high levels of reactive oxygen species (ROS) in the development of the severe and frequently progressive fibrotic process in Systemic Sclerosis (SSc). The role of excessive oxidative stress in SSc pathogenesis has been supported by the demonstration of increased levels of numerous biomarkers, indicative of cellular and molecular oxidative damage in serum, plasma, and other biological fluids from SSc patients, and by the demonstration of elevated production of ROS by various cell types involved in the SSc fibrotic process. However, the precise mechanisms mediating oxidative stress development in SSc and its pathogenetic effects have not been fully elucidated. The participation of the NADPH oxidase NOX4, has been suggested and experimentally supported by the demonstration that SSc dermal fibroblasts display constitutively increased NOX4 expression and that reduction or abrogation of NOX4 effects decreased ROS production and the expression of genes encoding fibrotic proteins. Furthermore, NOX4-stimulated ROS production may be involved in the development of certain endothelial and vascular abnormalities and may even participate in the generation of SSc-specific autoantibodies. Collectively, these observations suggest NOX4 as a novel therapeutic target for SSc.</description><identifier>ISSN: 2077-0383</identifier><identifier>EISSN: 2077-0383</identifier><identifier>DOI: 10.3390/jcm10204791</identifier><identifier>PMID: 34682914</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Antioxidants ; Biomarkers ; Clinical medicine ; Collagen ; Fibroblasts ; Genotype &amp; phenotype ; Hypotheses ; Kinases ; Oxidation ; Oxidative stress ; Pathogenesis ; Proteins ; Reactive oxygen species ; Review ; Scleroderma</subject><ispartof>Journal of clinical medicine, 2021-10, Vol.10 (20), p.4791</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-a20657545ca5b2b299e994a8a6c6d161f5577d5ec912c6464ba2e69636073ec73</citedby><cites>FETCH-LOGICAL-c386t-a20657545ca5b2b299e994a8a6c6d161f5577d5ec912c6464ba2e69636073ec73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539594/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539594/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids></links><search><creatorcontrib>Piera-Velazquez, Sonsoles</creatorcontrib><creatorcontrib>Jimenez, Sergio A.</creatorcontrib><title>Oxidative Stress Induced by Reactive Oxygen Species (ROS) and NADPH Oxidase 4 (NOX4) in the Pathogenesis of the Fibrotic Process in Systemic Sclerosis: A Promising Therapeutic Target</title><title>Journal of clinical medicine</title><description>Numerous clinical and research investigations conducted during the last two decades have implicated excessive oxidative stress caused by high levels of reactive oxygen species (ROS) in the development of the severe and frequently progressive fibrotic process in Systemic Sclerosis (SSc). The role of excessive oxidative stress in SSc pathogenesis has been supported by the demonstration of increased levels of numerous biomarkers, indicative of cellular and molecular oxidative damage in serum, plasma, and other biological fluids from SSc patients, and by the demonstration of elevated production of ROS by various cell types involved in the SSc fibrotic process. However, the precise mechanisms mediating oxidative stress development in SSc and its pathogenetic effects have not been fully elucidated. The participation of the NADPH oxidase NOX4, has been suggested and experimentally supported by the demonstration that SSc dermal fibroblasts display constitutively increased NOX4 expression and that reduction or abrogation of NOX4 effects decreased ROS production and the expression of genes encoding fibrotic proteins. Furthermore, NOX4-stimulated ROS production may be involved in the development of certain endothelial and vascular abnormalities and may even participate in the generation of SSc-specific autoantibodies. Collectively, these observations suggest NOX4 as a novel therapeutic target for SSc.</description><subject>Antioxidants</subject><subject>Biomarkers</subject><subject>Clinical medicine</subject><subject>Collagen</subject><subject>Fibroblasts</subject><subject>Genotype &amp; phenotype</subject><subject>Hypotheses</subject><subject>Kinases</subject><subject>Oxidation</subject><subject>Oxidative stress</subject><subject>Pathogenesis</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Review</subject><subject>Scleroderma</subject><issn>2077-0383</issn><issn>2077-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdks1qGzEQx5fS0oQ0p76AoBeH4larz1UPBZM2HxCyJnaht0WrHdsyuytH0ob4xfp80TqhpJ2Lhpnf_EcjTZZ9zPEXShX-ujVdjglmUuVvsmOCpZxiWtC3r_yj7DSELU5WFIzk8n12RJkoiMrZcfanfLSNjvYB0CJ6CAFd981goEH1Ht2BNodU-bhfQ48WOzAWAprclYszpPsG3c5-zK_QQSMAYmhyW_5mZ8j2KG4AzXXcuFQIwQbkVofYha29i9aguXdm7JfYxT5E6FJsYVrwLtHf0GwEOhtsv0bLDXi9g2EsW2q_hvghe7fSbYDTl_Mk-3Xxc3l-Nb0pL6_PZzdTQwsRp5pgwSVn3Ghek5ooBUoxXWhhRJOLfMW5lA0Ho3JiBBOs1gSEElRgScFIepJ9f9bdDXUHjYE-et1WO2877feV07b6N9PbTbV2D1XBqeKKJYHJi4B39wOEWKWZDLSt7sENoSK8YLJgmI_op__QrRt8n8Y7UFTJ9GeJ-vxMmfRQwcPq72VyXI0rUb1aCfoEIbunxQ</recordid><startdate>20211019</startdate><enddate>20211019</enddate><creator>Piera-Velazquez, Sonsoles</creator><creator>Jimenez, Sergio A.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20211019</creationdate><title>Oxidative Stress Induced by Reactive Oxygen Species (ROS) and NADPH Oxidase 4 (NOX4) in the Pathogenesis of the Fibrotic Process in Systemic Sclerosis: A Promising Therapeutic Target</title><author>Piera-Velazquez, Sonsoles ; Jimenez, Sergio A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-a20657545ca5b2b299e994a8a6c6d161f5577d5ec912c6464ba2e69636073ec73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antioxidants</topic><topic>Biomarkers</topic><topic>Clinical medicine</topic><topic>Collagen</topic><topic>Fibroblasts</topic><topic>Genotype &amp; phenotype</topic><topic>Hypotheses</topic><topic>Kinases</topic><topic>Oxidation</topic><topic>Oxidative stress</topic><topic>Pathogenesis</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Review</topic><topic>Scleroderma</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piera-Velazquez, Sonsoles</creatorcontrib><creatorcontrib>Jimenez, Sergio A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of clinical medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piera-Velazquez, Sonsoles</au><au>Jimenez, Sergio A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidative Stress Induced by Reactive Oxygen Species (ROS) and NADPH Oxidase 4 (NOX4) in the Pathogenesis of the Fibrotic Process in Systemic Sclerosis: A Promising Therapeutic Target</atitle><jtitle>Journal of clinical medicine</jtitle><date>2021-10-19</date><risdate>2021</risdate><volume>10</volume><issue>20</issue><spage>4791</spage><pages>4791-</pages><issn>2077-0383</issn><eissn>2077-0383</eissn><abstract>Numerous clinical and research investigations conducted during the last two decades have implicated excessive oxidative stress caused by high levels of reactive oxygen species (ROS) in the development of the severe and frequently progressive fibrotic process in Systemic Sclerosis (SSc). The role of excessive oxidative stress in SSc pathogenesis has been supported by the demonstration of increased levels of numerous biomarkers, indicative of cellular and molecular oxidative damage in serum, plasma, and other biological fluids from SSc patients, and by the demonstration of elevated production of ROS by various cell types involved in the SSc fibrotic process. However, the precise mechanisms mediating oxidative stress development in SSc and its pathogenetic effects have not been fully elucidated. The participation of the NADPH oxidase NOX4, has been suggested and experimentally supported by the demonstration that SSc dermal fibroblasts display constitutively increased NOX4 expression and that reduction or abrogation of NOX4 effects decreased ROS production and the expression of genes encoding fibrotic proteins. Furthermore, NOX4-stimulated ROS production may be involved in the development of certain endothelial and vascular abnormalities and may even participate in the generation of SSc-specific autoantibodies. Collectively, these observations suggest NOX4 as a novel therapeutic target for SSc.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34682914</pmid><doi>10.3390/jcm10204791</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-0383
ispartof Journal of clinical medicine, 2021-10, Vol.10 (20), p.4791
issn 2077-0383
2077-0383
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8539594
source MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; EZB Electronic Journals Library; PubMed Central Open Access
subjects Antioxidants
Biomarkers
Clinical medicine
Collagen
Fibroblasts
Genotype & phenotype
Hypotheses
Kinases
Oxidation
Oxidative stress
Pathogenesis
Proteins
Reactive oxygen species
Review
Scleroderma
title Oxidative Stress Induced by Reactive Oxygen Species (ROS) and NADPH Oxidase 4 (NOX4) in the Pathogenesis of the Fibrotic Process in Systemic Sclerosis: A Promising Therapeutic Target
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A17%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidative%20Stress%20Induced%20by%20Reactive%20Oxygen%20Species%20(ROS)%20and%20NADPH%20Oxidase%204%20(NOX4)%20in%20the%20Pathogenesis%20of%20the%20Fibrotic%20Process%20in%20Systemic%20Sclerosis:%20A%20Promising%20Therapeutic%20Target&rft.jtitle=Journal%20of%20clinical%20medicine&rft.au=Piera-Velazquez,%20Sonsoles&rft.date=2021-10-19&rft.volume=10&rft.issue=20&rft.spage=4791&rft.pages=4791-&rft.issn=2077-0383&rft.eissn=2077-0383&rft_id=info:doi/10.3390/jcm10204791&rft_dat=%3Cproquest_pubme%3E2584397829%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584397829&rft_id=info:pmid/34682914&rfr_iscdi=true