Disrupted Calcium Homeostasis in Duchenne Muscular Dystrophy: A Common Mechanism behind Diverse Consequences

Duchenne muscular dystrophy (DMD) leads to disability and death in young men. This disease is caused by mutations in the gene encoding diverse isoforms of dystrophin. Loss of full-length dystrophins is both necessary and sufficient for causing degeneration and wasting of striated muscles, neuropsych...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2021-10, Vol.22 (20), p.11040
Hauptverfasser: Zabłocka, Barbara, Górecki, Dariusz C, Zabłocki, Krzysztof
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page 11040
container_title International journal of molecular sciences
container_volume 22
creator Zabłocka, Barbara
Górecki, Dariusz C
Zabłocki, Krzysztof
description Duchenne muscular dystrophy (DMD) leads to disability and death in young men. This disease is caused by mutations in the gene encoding diverse isoforms of dystrophin. Loss of full-length dystrophins is both necessary and sufficient for causing degeneration and wasting of striated muscles, neuropsychological impairment, and bone deformities. Among this spectrum of defects, abnormalities of calcium homeostasis are the common dystrophic feature. Given the fundamental role of Ca in all cells, this biochemical alteration might be underlying all the DMD abnormalities. However, its mechanism is not completely understood. While abnormally elevated resting cytosolic Ca concentration is found in all dystrophic cells, the aberrant mechanisms leading to that outcome have cell-specific components. We probe the diverse aspects of calcium response in various affected tissues. In skeletal muscles, cardiomyocytes, and neurons, dystrophin appears to serve as a scaffold for proteins engaged in calcium homeostasis, while its interactions with actin cytoskeleton influence endoplasmic reticulum organisation and motility. However, in myoblasts, lymphocytes, endotheliocytes, and mesenchymal and myogenic cells, calcium abnormalities cannot be clearly attributed to the loss of interaction between dystrophin and the calcium toolbox proteins. Nevertheless, DMD gene mutations in these cells lead to significant defects and the calcium anomalies are a symptom of the early developmental phase of this pathology. As the impaired calcium homeostasis appears to underpin multiple DMD abnormalities, understanding this alteration may lead to the development of new therapies. In fact, it appears possible to mitigate the impact of the abnormal calcium homeostasis and the dystrophic phenotype in the total absence of dystrophin. This opens new treatment avenues for this incurable disease.
doi_str_mv 10.3390/ijms222011040
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8537421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584425817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-2ea76c44ed5f7cbdea7f6331acf7f6f299502df38a59e144be44224011d7c5c93</originalsourceid><addsrcrecordid>eNpdkb1vFDEQxS0EIiFQ0iJLNGkW_Hm-pUCK7oAgJaKB2vJ5Z1mf1vbhWUe6_x5DQpTQzIw1Pz3N8yPkNWfvpOzZ-7CPKIRgnDPFnpBTroToGFuZpw_mE_ICcc-YkEL3z8mJVKs1N8ycknkbsNTDAgPduNmHGulljpBxcRiQhkS31U-QEtDrir7OrtDtEZeSD9PxA72gmxxjTvQa_ORSwEh3MIU00G24gYLQ9gnhV4XkAV-SZ6ObEV7d9TPy4_On75vL7urbl6-bi6vOa6GXToAzK68UDHo0fje057iSkjs_tmEUfa-ZGEa5droHrtQOVDOq2hcMxmvfyzPy8Vb3UHcRBg9pKW62hxKiK0ebXbCPNylM9me-sWstjRK8CZzfCZTcbsfFxoAe5tklyBWt0GtlemaEaOjb_9B9riU1e38p1Qo3jepuKV8yYoHx_hjO7J8c7aMcG__moYN7-l9w8jeS8psd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584425817</pqid></control><display><type>article</type><title>Disrupted Calcium Homeostasis in Duchenne Muscular Dystrophy: A Common Mechanism behind Diverse Consequences</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Zabłocka, Barbara ; Górecki, Dariusz C ; Zabłocki, Krzysztof</creator><creatorcontrib>Zabłocka, Barbara ; Górecki, Dariusz C ; Zabłocki, Krzysztof</creatorcontrib><description>Duchenne muscular dystrophy (DMD) leads to disability and death in young men. This disease is caused by mutations in the gene encoding diverse isoforms of dystrophin. Loss of full-length dystrophins is both necessary and sufficient for causing degeneration and wasting of striated muscles, neuropsychological impairment, and bone deformities. Among this spectrum of defects, abnormalities of calcium homeostasis are the common dystrophic feature. Given the fundamental role of Ca in all cells, this biochemical alteration might be underlying all the DMD abnormalities. However, its mechanism is not completely understood. While abnormally elevated resting cytosolic Ca concentration is found in all dystrophic cells, the aberrant mechanisms leading to that outcome have cell-specific components. We probe the diverse aspects of calcium response in various affected tissues. In skeletal muscles, cardiomyocytes, and neurons, dystrophin appears to serve as a scaffold for proteins engaged in calcium homeostasis, while its interactions with actin cytoskeleton influence endoplasmic reticulum organisation and motility. However, in myoblasts, lymphocytes, endotheliocytes, and mesenchymal and myogenic cells, calcium abnormalities cannot be clearly attributed to the loss of interaction between dystrophin and the calcium toolbox proteins. Nevertheless, DMD gene mutations in these cells lead to significant defects and the calcium anomalies are a symptom of the early developmental phase of this pathology. As the impaired calcium homeostasis appears to underpin multiple DMD abnormalities, understanding this alteration may lead to the development of new therapies. In fact, it appears possible to mitigate the impact of the abnormal calcium homeostasis and the dystrophic phenotype in the total absence of dystrophin. This opens new treatment avenues for this incurable disease.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms222011040</identifier><identifier>PMID: 34681707</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Ablation ; Abnormalities ; Actin ; Anomalies ; Binding sites ; Calcium - metabolism ; Calcium homeostasis ; Calcium ions ; Calcium Signaling ; Cardiomyocytes ; Cytoskeleton ; Degeneration ; Duchenne's muscular dystrophy ; Dystrophin ; Dystrophin - chemistry ; Dystrophin - genetics ; Dystrophin - metabolism ; Endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Homeostasis ; Humans ; Isoforms ; Lymphocytes ; Mesenchyme ; Mitochondria - metabolism ; Muscle, Skeletal - metabolism ; Muscles ; Muscular dystrophy ; Muscular Dystrophy, Duchenne - genetics ; Muscular Dystrophy, Duchenne - metabolism ; Muscular Dystrophy, Duchenne - pathology ; Mutation ; Myoblasts ; Pathology ; Phenotypes ; Prenatal development ; Proteins ; Review ; Skeletal muscle</subject><ispartof>International journal of molecular sciences, 2021-10, Vol.22 (20), p.11040</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-2ea76c44ed5f7cbdea7f6331acf7f6f299502df38a59e144be44224011d7c5c93</citedby><cites>FETCH-LOGICAL-c525t-2ea76c44ed5f7cbdea7f6331acf7f6f299502df38a59e144be44224011d7c5c93</cites><orcidid>0000-0003-3116-7295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537421/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537421/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34681707$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zabłocka, Barbara</creatorcontrib><creatorcontrib>Górecki, Dariusz C</creatorcontrib><creatorcontrib>Zabłocki, Krzysztof</creatorcontrib><title>Disrupted Calcium Homeostasis in Duchenne Muscular Dystrophy: A Common Mechanism behind Diverse Consequences</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Duchenne muscular dystrophy (DMD) leads to disability and death in young men. This disease is caused by mutations in the gene encoding diverse isoforms of dystrophin. Loss of full-length dystrophins is both necessary and sufficient for causing degeneration and wasting of striated muscles, neuropsychological impairment, and bone deformities. Among this spectrum of defects, abnormalities of calcium homeostasis are the common dystrophic feature. Given the fundamental role of Ca in all cells, this biochemical alteration might be underlying all the DMD abnormalities. However, its mechanism is not completely understood. While abnormally elevated resting cytosolic Ca concentration is found in all dystrophic cells, the aberrant mechanisms leading to that outcome have cell-specific components. We probe the diverse aspects of calcium response in various affected tissues. In skeletal muscles, cardiomyocytes, and neurons, dystrophin appears to serve as a scaffold for proteins engaged in calcium homeostasis, while its interactions with actin cytoskeleton influence endoplasmic reticulum organisation and motility. However, in myoblasts, lymphocytes, endotheliocytes, and mesenchymal and myogenic cells, calcium abnormalities cannot be clearly attributed to the loss of interaction between dystrophin and the calcium toolbox proteins. Nevertheless, DMD gene mutations in these cells lead to significant defects and the calcium anomalies are a symptom of the early developmental phase of this pathology. As the impaired calcium homeostasis appears to underpin multiple DMD abnormalities, understanding this alteration may lead to the development of new therapies. In fact, it appears possible to mitigate the impact of the abnormal calcium homeostasis and the dystrophic phenotype in the total absence of dystrophin. This opens new treatment avenues for this incurable disease.</description><subject>Ablation</subject><subject>Abnormalities</subject><subject>Actin</subject><subject>Anomalies</subject><subject>Binding sites</subject><subject>Calcium - metabolism</subject><subject>Calcium homeostasis</subject><subject>Calcium ions</subject><subject>Calcium Signaling</subject><subject>Cardiomyocytes</subject><subject>Cytoskeleton</subject><subject>Degeneration</subject><subject>Duchenne's muscular dystrophy</subject><subject>Dystrophin</subject><subject>Dystrophin - chemistry</subject><subject>Dystrophin - genetics</subject><subject>Dystrophin - metabolism</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Isoforms</subject><subject>Lymphocytes</subject><subject>Mesenchyme</subject><subject>Mitochondria - metabolism</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Muscular dystrophy</subject><subject>Muscular Dystrophy, Duchenne - genetics</subject><subject>Muscular Dystrophy, Duchenne - metabolism</subject><subject>Muscular Dystrophy, Duchenne - pathology</subject><subject>Mutation</subject><subject>Myoblasts</subject><subject>Pathology</subject><subject>Phenotypes</subject><subject>Prenatal development</subject><subject>Proteins</subject><subject>Review</subject><subject>Skeletal muscle</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkb1vFDEQxS0EIiFQ0iJLNGkW_Hm-pUCK7oAgJaKB2vJ5Z1mf1vbhWUe6_x5DQpTQzIw1Pz3N8yPkNWfvpOzZ-7CPKIRgnDPFnpBTroToGFuZpw_mE_ICcc-YkEL3z8mJVKs1N8ycknkbsNTDAgPduNmHGulljpBxcRiQhkS31U-QEtDrir7OrtDtEZeSD9PxA72gmxxjTvQa_ORSwEh3MIU00G24gYLQ9gnhV4XkAV-SZ6ObEV7d9TPy4_On75vL7urbl6-bi6vOa6GXToAzK68UDHo0fje057iSkjs_tmEUfa-ZGEa5droHrtQOVDOq2hcMxmvfyzPy8Vb3UHcRBg9pKW62hxKiK0ebXbCPNylM9me-sWstjRK8CZzfCZTcbsfFxoAe5tklyBWt0GtlemaEaOjb_9B9riU1e38p1Qo3jepuKV8yYoHx_hjO7J8c7aMcG__moYN7-l9w8jeS8psd</recordid><startdate>20211013</startdate><enddate>20211013</enddate><creator>Zabłocka, Barbara</creator><creator>Górecki, Dariusz C</creator><creator>Zabłocki, Krzysztof</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3116-7295</orcidid></search><sort><creationdate>20211013</creationdate><title>Disrupted Calcium Homeostasis in Duchenne Muscular Dystrophy: A Common Mechanism behind Diverse Consequences</title><author>Zabłocka, Barbara ; Górecki, Dariusz C ; Zabłocki, Krzysztof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-2ea76c44ed5f7cbdea7f6331acf7f6f299502df38a59e144be44224011d7c5c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>Abnormalities</topic><topic>Actin</topic><topic>Anomalies</topic><topic>Binding sites</topic><topic>Calcium - metabolism</topic><topic>Calcium homeostasis</topic><topic>Calcium ions</topic><topic>Calcium Signaling</topic><topic>Cardiomyocytes</topic><topic>Cytoskeleton</topic><topic>Degeneration</topic><topic>Duchenne's muscular dystrophy</topic><topic>Dystrophin</topic><topic>Dystrophin - chemistry</topic><topic>Dystrophin - genetics</topic><topic>Dystrophin - metabolism</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Isoforms</topic><topic>Lymphocytes</topic><topic>Mesenchyme</topic><topic>Mitochondria - metabolism</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Muscular dystrophy</topic><topic>Muscular Dystrophy, Duchenne - genetics</topic><topic>Muscular Dystrophy, Duchenne - metabolism</topic><topic>Muscular Dystrophy, Duchenne - pathology</topic><topic>Mutation</topic><topic>Myoblasts</topic><topic>Pathology</topic><topic>Phenotypes</topic><topic>Prenatal development</topic><topic>Proteins</topic><topic>Review</topic><topic>Skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zabłocka, Barbara</creatorcontrib><creatorcontrib>Górecki, Dariusz C</creatorcontrib><creatorcontrib>Zabłocki, Krzysztof</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zabłocka, Barbara</au><au>Górecki, Dariusz C</au><au>Zabłocki, Krzysztof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disrupted Calcium Homeostasis in Duchenne Muscular Dystrophy: A Common Mechanism behind Diverse Consequences</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2021-10-13</date><risdate>2021</risdate><volume>22</volume><issue>20</issue><spage>11040</spage><pages>11040-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Duchenne muscular dystrophy (DMD) leads to disability and death in young men. This disease is caused by mutations in the gene encoding diverse isoforms of dystrophin. Loss of full-length dystrophins is both necessary and sufficient for causing degeneration and wasting of striated muscles, neuropsychological impairment, and bone deformities. Among this spectrum of defects, abnormalities of calcium homeostasis are the common dystrophic feature. Given the fundamental role of Ca in all cells, this biochemical alteration might be underlying all the DMD abnormalities. However, its mechanism is not completely understood. While abnormally elevated resting cytosolic Ca concentration is found in all dystrophic cells, the aberrant mechanisms leading to that outcome have cell-specific components. We probe the diverse aspects of calcium response in various affected tissues. In skeletal muscles, cardiomyocytes, and neurons, dystrophin appears to serve as a scaffold for proteins engaged in calcium homeostasis, while its interactions with actin cytoskeleton influence endoplasmic reticulum organisation and motility. However, in myoblasts, lymphocytes, endotheliocytes, and mesenchymal and myogenic cells, calcium abnormalities cannot be clearly attributed to the loss of interaction between dystrophin and the calcium toolbox proteins. Nevertheless, DMD gene mutations in these cells lead to significant defects and the calcium anomalies are a symptom of the early developmental phase of this pathology. As the impaired calcium homeostasis appears to underpin multiple DMD abnormalities, understanding this alteration may lead to the development of new therapies. In fact, it appears possible to mitigate the impact of the abnormal calcium homeostasis and the dystrophic phenotype in the total absence of dystrophin. This opens new treatment avenues for this incurable disease.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34681707</pmid><doi>10.3390/ijms222011040</doi><orcidid>https://orcid.org/0000-0003-3116-7295</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2021-10, Vol.22 (20), p.11040
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8537421
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects Ablation
Abnormalities
Actin
Anomalies
Binding sites
Calcium - metabolism
Calcium homeostasis
Calcium ions
Calcium Signaling
Cardiomyocytes
Cytoskeleton
Degeneration
Duchenne's muscular dystrophy
Dystrophin
Dystrophin - chemistry
Dystrophin - genetics
Dystrophin - metabolism
Endoplasmic reticulum
Endoplasmic Reticulum - metabolism
Homeostasis
Humans
Isoforms
Lymphocytes
Mesenchyme
Mitochondria - metabolism
Muscle, Skeletal - metabolism
Muscles
Muscular dystrophy
Muscular Dystrophy, Duchenne - genetics
Muscular Dystrophy, Duchenne - metabolism
Muscular Dystrophy, Duchenne - pathology
Mutation
Myoblasts
Pathology
Phenotypes
Prenatal development
Proteins
Review
Skeletal muscle
title Disrupted Calcium Homeostasis in Duchenne Muscular Dystrophy: A Common Mechanism behind Diverse Consequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A09%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disrupted%20Calcium%20Homeostasis%20in%20Duchenne%20Muscular%20Dystrophy:%20A%20Common%20Mechanism%20behind%20Diverse%20Consequences&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Zab%C5%82ocka,%20Barbara&rft.date=2021-10-13&rft.volume=22&rft.issue=20&rft.spage=11040&rft.pages=11040-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms222011040&rft_dat=%3Cproquest_pubme%3E2584425817%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584425817&rft_id=info:pmid/34681707&rfr_iscdi=true