Optimized delay of the second COVID-19 vaccine dose reduces ICU admissions

Slower than anticipated, COVID-19 vaccine production and distribution have impaired efforts to curtail the current pandemic. The standard administration schedule for most COVID-19 vaccines currently approved is two doses administered 3 to 4 wk apart. To increase the number of individuals with partia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-08, Vol.118 (35), p.1-6
Hauptverfasser: Silva, Paulo J. S., Sagastizábal, Claudia, Nonato, Luís Gustavo, Struchiner, Claudio José, Pereira, Tiago
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 35
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Silva, Paulo J. S.
Sagastizábal, Claudia
Nonato, Luís Gustavo
Struchiner, Claudio José
Pereira, Tiago
description Slower than anticipated, COVID-19 vaccine production and distribution have impaired efforts to curtail the current pandemic. The standard administration schedule for most COVID-19 vaccines currently approved is two doses administered 3 to 4 wk apart. To increase the number of individuals with partial protection, some governments are considering delaying the second vaccine dose. However, the delay duration must take into account crucial factors, such as the degree of protection conferred by a single dose, the anticipated vaccine supply pipeline, and the potential emergence of more virulent COVID-19 variants. To help guide decision-making, we propose here an optimization model based on extended susceptible, exposed, infectious, and removed (SEIR) dynamics that determines the optimal delay duration between the first and second COVID-19 vaccine doses. The model assumes lenient social distancing and uses intensive care unit (ICU) admission as a key metric while selecting the optimal duration between doses vs. the standard 4-wk delay. While epistemic uncertainties apply to the interpretation of simulation outputs, we found that the delay is dependent on the vaccine mechanism of action and first-dose efficacy. For infection-blocking vaccines with first-dose efficacy ≥50%, the model predicts that the second dose can be delayed by ≥8 wk (half of the maximal delay), whereas for symptom-alleviating vaccines, the same delay is recommended only if the first-dose efficacy is ≥70%. Our model predicts that a 12-wk second-dose delay of an infection-blocking vaccine with a first-dose efficacy ≥70% could reduce ICU admissions by 400 people per million over 200 d.
doi_str_mv 10.1073/pnas.2104640118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8536357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27075285</jstor_id><sourcerecordid>27075285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3358-37e1e8649c1f48e3f0949b02a9acf0bcbf25b1776ee0128a0199b05d9a8ce9c3</originalsourceid><addsrcrecordid>eNpdkc1L7DAUxYM80fFj7epB4G3epnrz0SbZCDLPjxFhNuo2pOmtdug085JW0L_elhFFV3dxfudwLoeQEwanDJQ423QunXIGspDAmN4hMwaGZYU08IvMALjKtORynxyktAIAk2vYI_tCStCgihm5XW76Zt28YUUrbN0rDTXtn5Em9KGr6Hz5uPiXMUNfnPdNh7QKCWnEavCY6GL-QF21blJqQpeOyG7t2oTHH_eQ3F9d3s9vsrvl9WJ-cZd5IXKdCYUM9djQs1pqFDUYaUrgzjhfQ-nLmuclU6pABMa1A2ZGOa-M0x6NF4fkfBu7Gco1Vh67PrrWbmKzdvHVBtfY70rXPNun8GJ1LgqRqzHg70dADP8HTL0dP_DYtq7DMCTL84JrbqSY0D8_0FUYYjd-N1FGjv3YRJ1tKR9DShHrzzIM7DSTnWayXzONjt9bxyr1IX7iXIHK-djzHfxbjQo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569412817</pqid></control><display><type>article</type><title>Optimized delay of the second COVID-19 vaccine dose reduces ICU admissions</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Silva, Paulo J. S. ; Sagastizábal, Claudia ; Nonato, Luís Gustavo ; Struchiner, Claudio José ; Pereira, Tiago</creator><creatorcontrib>Silva, Paulo J. S. ; Sagastizábal, Claudia ; Nonato, Luís Gustavo ; Struchiner, Claudio José ; Pereira, Tiago</creatorcontrib><description>Slower than anticipated, COVID-19 vaccine production and distribution have impaired efforts to curtail the current pandemic. The standard administration schedule for most COVID-19 vaccines currently approved is two doses administered 3 to 4 wk apart. To increase the number of individuals with partial protection, some governments are considering delaying the second vaccine dose. However, the delay duration must take into account crucial factors, such as the degree of protection conferred by a single dose, the anticipated vaccine supply pipeline, and the potential emergence of more virulent COVID-19 variants. To help guide decision-making, we propose here an optimization model based on extended susceptible, exposed, infectious, and removed (SEIR) dynamics that determines the optimal delay duration between the first and second COVID-19 vaccine doses. The model assumes lenient social distancing and uses intensive care unit (ICU) admission as a key metric while selecting the optimal duration between doses vs. the standard 4-wk delay. While epistemic uncertainties apply to the interpretation of simulation outputs, we found that the delay is dependent on the vaccine mechanism of action and first-dose efficacy. For infection-blocking vaccines with first-dose efficacy ≥50%, the model predicts that the second dose can be delayed by ≥8 wk (half of the maximal delay), whereas for symptom-alleviating vaccines, the same delay is recommended only if the first-dose efficacy is ≥70%. Our model predicts that a 12-wk second-dose delay of an infection-blocking vaccine with a first-dose efficacy ≥70% could reduce ICU admissions by 400 people per million over 200 d.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2104640118</identifier><identifier>PMID: 34408076</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Coronaviruses ; COVID-19 ; COVID-19 vaccines ; Decision making ; Delay ; Disease control ; Dosage ; Optimization ; Pandemics ; Patient admissions ; Physical Sciences ; Schedules ; Vaccines</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-08, Vol.118 (35), p.1-6</ispartof><rights>Copyright National Academy of Sciences Aug 31, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3358-37e1e8649c1f48e3f0949b02a9acf0bcbf25b1776ee0128a0199b05d9a8ce9c3</citedby><cites>FETCH-LOGICAL-c3358-37e1e8649c1f48e3f0949b02a9acf0bcbf25b1776ee0128a0199b05d9a8ce9c3</cites><orcidid>0000-0002-9363-9297 ; 0000-0003-1340-965X ; 0000-0003-2114-847X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27075285$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27075285$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27911,27912,53778,53780,58004,58237</link.rule.ids></links><search><creatorcontrib>Silva, Paulo J. S.</creatorcontrib><creatorcontrib>Sagastizábal, Claudia</creatorcontrib><creatorcontrib>Nonato, Luís Gustavo</creatorcontrib><creatorcontrib>Struchiner, Claudio José</creatorcontrib><creatorcontrib>Pereira, Tiago</creatorcontrib><title>Optimized delay of the second COVID-19 vaccine dose reduces ICU admissions</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Slower than anticipated, COVID-19 vaccine production and distribution have impaired efforts to curtail the current pandemic. The standard administration schedule for most COVID-19 vaccines currently approved is two doses administered 3 to 4 wk apart. To increase the number of individuals with partial protection, some governments are considering delaying the second vaccine dose. However, the delay duration must take into account crucial factors, such as the degree of protection conferred by a single dose, the anticipated vaccine supply pipeline, and the potential emergence of more virulent COVID-19 variants. To help guide decision-making, we propose here an optimization model based on extended susceptible, exposed, infectious, and removed (SEIR) dynamics that determines the optimal delay duration between the first and second COVID-19 vaccine doses. The model assumes lenient social distancing and uses intensive care unit (ICU) admission as a key metric while selecting the optimal duration between doses vs. the standard 4-wk delay. While epistemic uncertainties apply to the interpretation of simulation outputs, we found that the delay is dependent on the vaccine mechanism of action and first-dose efficacy. For infection-blocking vaccines with first-dose efficacy ≥50%, the model predicts that the second dose can be delayed by ≥8 wk (half of the maximal delay), whereas for symptom-alleviating vaccines, the same delay is recommended only if the first-dose efficacy is ≥70%. Our model predicts that a 12-wk second-dose delay of an infection-blocking vaccine with a first-dose efficacy ≥70% could reduce ICU admissions by 400 people per million over 200 d.</description><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 vaccines</subject><subject>Decision making</subject><subject>Delay</subject><subject>Disease control</subject><subject>Dosage</subject><subject>Optimization</subject><subject>Pandemics</subject><subject>Patient admissions</subject><subject>Physical Sciences</subject><subject>Schedules</subject><subject>Vaccines</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkc1L7DAUxYM80fFj7epB4G3epnrz0SbZCDLPjxFhNuo2pOmtdug085JW0L_elhFFV3dxfudwLoeQEwanDJQ423QunXIGspDAmN4hMwaGZYU08IvMALjKtORynxyktAIAk2vYI_tCStCgihm5XW76Zt28YUUrbN0rDTXtn5Em9KGr6Hz5uPiXMUNfnPdNh7QKCWnEavCY6GL-QF21blJqQpeOyG7t2oTHH_eQ3F9d3s9vsrvl9WJ-cZd5IXKdCYUM9djQs1pqFDUYaUrgzjhfQ-nLmuclU6pABMa1A2ZGOa-M0x6NF4fkfBu7Gco1Vh67PrrWbmKzdvHVBtfY70rXPNun8GJ1LgqRqzHg70dADP8HTL0dP_DYtq7DMCTL84JrbqSY0D8_0FUYYjd-N1FGjv3YRJ1tKR9DShHrzzIM7DSTnWayXzONjt9bxyr1IX7iXIHK-djzHfxbjQo</recordid><startdate>20210831</startdate><enddate>20210831</enddate><creator>Silva, Paulo J. S.</creator><creator>Sagastizábal, Claudia</creator><creator>Nonato, Luís Gustavo</creator><creator>Struchiner, Claudio José</creator><creator>Pereira, Tiago</creator><general>National Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9363-9297</orcidid><orcidid>https://orcid.org/0000-0003-1340-965X</orcidid><orcidid>https://orcid.org/0000-0003-2114-847X</orcidid></search><sort><creationdate>20210831</creationdate><title>Optimized delay of the second COVID-19 vaccine dose reduces ICU admissions</title><author>Silva, Paulo J. S. ; Sagastizábal, Claudia ; Nonato, Luís Gustavo ; Struchiner, Claudio José ; Pereira, Tiago</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3358-37e1e8649c1f48e3f0949b02a9acf0bcbf25b1776ee0128a0199b05d9a8ce9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 vaccines</topic><topic>Decision making</topic><topic>Delay</topic><topic>Disease control</topic><topic>Dosage</topic><topic>Optimization</topic><topic>Pandemics</topic><topic>Patient admissions</topic><topic>Physical Sciences</topic><topic>Schedules</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Paulo J. S.</creatorcontrib><creatorcontrib>Sagastizábal, Claudia</creatorcontrib><creatorcontrib>Nonato, Luís Gustavo</creatorcontrib><creatorcontrib>Struchiner, Claudio José</creatorcontrib><creatorcontrib>Pereira, Tiago</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Paulo J. S.</au><au>Sagastizábal, Claudia</au><au>Nonato, Luís Gustavo</au><au>Struchiner, Claudio José</au><au>Pereira, Tiago</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized delay of the second COVID-19 vaccine dose reduces ICU admissions</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2021-08-31</date><risdate>2021</risdate><volume>118</volume><issue>35</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Slower than anticipated, COVID-19 vaccine production and distribution have impaired efforts to curtail the current pandemic. The standard administration schedule for most COVID-19 vaccines currently approved is two doses administered 3 to 4 wk apart. To increase the number of individuals with partial protection, some governments are considering delaying the second vaccine dose. However, the delay duration must take into account crucial factors, such as the degree of protection conferred by a single dose, the anticipated vaccine supply pipeline, and the potential emergence of more virulent COVID-19 variants. To help guide decision-making, we propose here an optimization model based on extended susceptible, exposed, infectious, and removed (SEIR) dynamics that determines the optimal delay duration between the first and second COVID-19 vaccine doses. The model assumes lenient social distancing and uses intensive care unit (ICU) admission as a key metric while selecting the optimal duration between doses vs. the standard 4-wk delay. While epistemic uncertainties apply to the interpretation of simulation outputs, we found that the delay is dependent on the vaccine mechanism of action and first-dose efficacy. For infection-blocking vaccines with first-dose efficacy ≥50%, the model predicts that the second dose can be delayed by ≥8 wk (half of the maximal delay), whereas for symptom-alleviating vaccines, the same delay is recommended only if the first-dose efficacy is ≥70%. Our model predicts that a 12-wk second-dose delay of an infection-blocking vaccine with a first-dose efficacy ≥70% could reduce ICU admissions by 400 people per million over 200 d.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>34408076</pmid><doi>10.1073/pnas.2104640118</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9363-9297</orcidid><orcidid>https://orcid.org/0000-0003-1340-965X</orcidid><orcidid>https://orcid.org/0000-0003-2114-847X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-08, Vol.118 (35), p.1-6
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8536357
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Coronaviruses
COVID-19
COVID-19 vaccines
Decision making
Delay
Disease control
Dosage
Optimization
Pandemics
Patient admissions
Physical Sciences
Schedules
Vaccines
title Optimized delay of the second COVID-19 vaccine dose reduces ICU admissions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A49%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20delay%20of%20the%20second%20COVID-19%20vaccine%20dose%20reduces%20ICU%20admissions&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Silva,%20Paulo%20J.%20S.&rft.date=2021-08-31&rft.volume=118&rft.issue=35&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2104640118&rft_dat=%3Cjstor_pubme%3E27075285%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569412817&rft_id=info:pmid/34408076&rft_jstor_id=27075285&rfr_iscdi=true