Robust high-temperature potassium-ion batteries enabled by carboxyl functional group energy storage
The popularly reported energy storage mechanisms of potassium-ion batteries (PIBs) are based on alloy-, de-intercalation-, and conversion-type processes, which inevitably lead to structural damage of the electrodes caused by intercalation/de-intercalation of K⁺ with a relatively large radius, which...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-08, Vol.118 (35), p.1-6 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 35 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Lu, Xianlu Pan, Xuenan Zhang, Dongdong Fang, Zhi Xu, Shang Ma, Yu Liu, Qiao Shao, Gang Fu, Dingfa Teng, Jie Yang, Weiyou |
description | The popularly reported energy storage mechanisms of potassium-ion batteries (PIBs) are based on alloy-, de-intercalation-, and conversion-type processes, which inevitably lead to structural damage of the electrodes caused by intercalation/de-intercalation of K⁺ with a relatively large radius, which is accompanied by poor cycle stabilities. Here, we report the exploration of robust high-temperature PIBs enabled by a carboxyl functional group energy storage mechanism, which is based on an example of p-phthalic acid (PTA) with two carboxyl functional groups as the redox centers. In such a case, the intercalation/de-intercalation of K⁺ can be performed via surface reactions with relieved volume change, thus favoring excellent cycle stability for PIBs against high temperatures. As proof of concept, at the fixed working temperature of 62.5 °C, the initial discharge and charge specific capacities of the PTA electrode are ∼660 and 165 mA·h·g−1, respectively, at a current density of 100 mA·g−1, with 86% specific capacity retention after 160 cycles. Meanwhile, it delivers 81.5% specific capacity retention after 390 cycles under a high current density of 500 mA·g−1. The cycle stabilities achieved under both low and high current densities are the best among those of high-temperature PIBs reported previously. |
doi_str_mv | 10.1073/pnas.2110912118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8536337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27075295</jstor_id><sourcerecordid>27075295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-9387fcb7fe2a44060d652175330286569e859482369e6662d6e1e418e81fbe3d3</originalsourceid><addsrcrecordid>eNpdkcuL1EAQxhtR3HH17EkJePGS3X4_LoIsvmBBED03naSSyZCkYz8W57-346zj41JVUL_6qKoPoecEXxGs2PW6uHhFCcGGlKgfoN1W1pIb_BDtMKaq1pzyC_QkxgPG2AiNH6MLxjk1TNIdar_4JsdU7cdhXyeYVwgu5QDV6pOLccxzPfqlalxKEEaIFSyumaCrmmPVutD4H8ep6vPSpoK5qRqCz2uBIAzHKiYf3ABP0aPeTRGe3edL9O39u683H-vbzx8-3by9rVvOWaoN06pvG9UDdZxjiTspKFGCMUy1FNKAFoZrykolpaSdBAKcaNCkb4B17BK9OemuuZmha2FJwU12DePswtF6N9p_O8u4t4O_s1owyZgqAq_vBYL_niEmO4-xhWlyC_gcLRWSc62w2NBX_6EHn0P5wC_KcFJWJoW6PlFt8DEG6M_LEGw3A-1moP1jYJl4-fcNZ_63YwV4cQIO23fPfaqwEtQI9hNe36IU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569412861</pqid></control><display><type>article</type><title>Robust high-temperature potassium-ion batteries enabled by carboxyl functional group energy storage</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lu, Xianlu ; Pan, Xuenan ; Zhang, Dongdong ; Fang, Zhi ; Xu, Shang ; Ma, Yu ; Liu, Qiao ; Shao, Gang ; Fu, Dingfa ; Teng, Jie ; Yang, Weiyou</creator><creatorcontrib>Lu, Xianlu ; Pan, Xuenan ; Zhang, Dongdong ; Fang, Zhi ; Xu, Shang ; Ma, Yu ; Liu, Qiao ; Shao, Gang ; Fu, Dingfa ; Teng, Jie ; Yang, Weiyou</creatorcontrib><description>The popularly reported energy storage mechanisms of potassium-ion batteries (PIBs) are based on alloy-, de-intercalation-, and conversion-type processes, which inevitably lead to structural damage of the electrodes caused by intercalation/de-intercalation of K⁺ with a relatively large radius, which is accompanied by poor cycle stabilities. Here, we report the exploration of robust high-temperature PIBs enabled by a carboxyl functional group energy storage mechanism, which is based on an example of p-phthalic acid (PTA) with two carboxyl functional groups as the redox centers. In such a case, the intercalation/de-intercalation of K⁺ can be performed via surface reactions with relieved volume change, thus favoring excellent cycle stability for PIBs against high temperatures. As proof of concept, at the fixed working temperature of 62.5 °C, the initial discharge and charge specific capacities of the PTA electrode are ∼660 and 165 mA·h·g−1, respectively, at a current density of 100 mA·g−1, with 86% specific capacity retention after 160 cycles. Meanwhile, it delivers 81.5% specific capacity retention after 390 cycles under a high current density of 500 mA·g−1. The cycle stabilities achieved under both low and high current densities are the best among those of high-temperature PIBs reported previously.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2110912118</identifier><identifier>PMID: 34429362</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Batteries ; Current density ; Electrodes ; Energy storage ; Functional groups ; High current ; High temperature ; Intercalation ; Phthalic acid ; Physical Sciences ; Potassium ; Rechargeable batteries ; Retention ; Robustness ; Specific capacity ; Storage batteries ; Structural damage ; Surface reactions</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-08, Vol.118 (35), p.1-6</ispartof><rights>Copyright National Academy of Sciences Aug 31, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-9387fcb7fe2a44060d652175330286569e859482369e6662d6e1e418e81fbe3d3</citedby><cites>FETCH-LOGICAL-c443t-9387fcb7fe2a44060d652175330286569e859482369e6662d6e1e418e81fbe3d3</cites><orcidid>0000-0001-7312-7131 ; 0000-0003-3635-7063 ; 0000-0002-3607-3514 ; 0000-0002-5524-1122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27075295$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27075295$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34429362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Xianlu</creatorcontrib><creatorcontrib>Pan, Xuenan</creatorcontrib><creatorcontrib>Zhang, Dongdong</creatorcontrib><creatorcontrib>Fang, Zhi</creatorcontrib><creatorcontrib>Xu, Shang</creatorcontrib><creatorcontrib>Ma, Yu</creatorcontrib><creatorcontrib>Liu, Qiao</creatorcontrib><creatorcontrib>Shao, Gang</creatorcontrib><creatorcontrib>Fu, Dingfa</creatorcontrib><creatorcontrib>Teng, Jie</creatorcontrib><creatorcontrib>Yang, Weiyou</creatorcontrib><title>Robust high-temperature potassium-ion batteries enabled by carboxyl functional group energy storage</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The popularly reported energy storage mechanisms of potassium-ion batteries (PIBs) are based on alloy-, de-intercalation-, and conversion-type processes, which inevitably lead to structural damage of the electrodes caused by intercalation/de-intercalation of K⁺ with a relatively large radius, which is accompanied by poor cycle stabilities. Here, we report the exploration of robust high-temperature PIBs enabled by a carboxyl functional group energy storage mechanism, which is based on an example of p-phthalic acid (PTA) with two carboxyl functional groups as the redox centers. In such a case, the intercalation/de-intercalation of K⁺ can be performed via surface reactions with relieved volume change, thus favoring excellent cycle stability for PIBs against high temperatures. As proof of concept, at the fixed working temperature of 62.5 °C, the initial discharge and charge specific capacities of the PTA electrode are ∼660 and 165 mA·h·g−1, respectively, at a current density of 100 mA·g−1, with 86% specific capacity retention after 160 cycles. Meanwhile, it delivers 81.5% specific capacity retention after 390 cycles under a high current density of 500 mA·g−1. The cycle stabilities achieved under both low and high current densities are the best among those of high-temperature PIBs reported previously.</description><subject>Batteries</subject><subject>Current density</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Functional groups</subject><subject>High current</subject><subject>High temperature</subject><subject>Intercalation</subject><subject>Phthalic acid</subject><subject>Physical Sciences</subject><subject>Potassium</subject><subject>Rechargeable batteries</subject><subject>Retention</subject><subject>Robustness</subject><subject>Specific capacity</subject><subject>Storage batteries</subject><subject>Structural damage</subject><subject>Surface reactions</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkcuL1EAQxhtR3HH17EkJePGS3X4_LoIsvmBBED03naSSyZCkYz8W57-346zj41JVUL_6qKoPoecEXxGs2PW6uHhFCcGGlKgfoN1W1pIb_BDtMKaq1pzyC_QkxgPG2AiNH6MLxjk1TNIdar_4JsdU7cdhXyeYVwgu5QDV6pOLccxzPfqlalxKEEaIFSyumaCrmmPVutD4H8ep6vPSpoK5qRqCz2uBIAzHKiYf3ABP0aPeTRGe3edL9O39u683H-vbzx8-3by9rVvOWaoN06pvG9UDdZxjiTspKFGCMUy1FNKAFoZrykolpaSdBAKcaNCkb4B17BK9OemuuZmha2FJwU12DePswtF6N9p_O8u4t4O_s1owyZgqAq_vBYL_niEmO4-xhWlyC_gcLRWSc62w2NBX_6EHn0P5wC_KcFJWJoW6PlFt8DEG6M_LEGw3A-1moP1jYJl4-fcNZ_63YwV4cQIO23fPfaqwEtQI9hNe36IU</recordid><startdate>20210831</startdate><enddate>20210831</enddate><creator>Lu, Xianlu</creator><creator>Pan, Xuenan</creator><creator>Zhang, Dongdong</creator><creator>Fang, Zhi</creator><creator>Xu, Shang</creator><creator>Ma, Yu</creator><creator>Liu, Qiao</creator><creator>Shao, Gang</creator><creator>Fu, Dingfa</creator><creator>Teng, Jie</creator><creator>Yang, Weiyou</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7312-7131</orcidid><orcidid>https://orcid.org/0000-0003-3635-7063</orcidid><orcidid>https://orcid.org/0000-0002-3607-3514</orcidid><orcidid>https://orcid.org/0000-0002-5524-1122</orcidid></search><sort><creationdate>20210831</creationdate><title>Robust high-temperature potassium-ion batteries enabled by carboxyl functional group energy storage</title><author>Lu, Xianlu ; Pan, Xuenan ; Zhang, Dongdong ; Fang, Zhi ; Xu, Shang ; Ma, Yu ; Liu, Qiao ; Shao, Gang ; Fu, Dingfa ; Teng, Jie ; Yang, Weiyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-9387fcb7fe2a44060d652175330286569e859482369e6662d6e1e418e81fbe3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Batteries</topic><topic>Current density</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Functional groups</topic><topic>High current</topic><topic>High temperature</topic><topic>Intercalation</topic><topic>Phthalic acid</topic><topic>Physical Sciences</topic><topic>Potassium</topic><topic>Rechargeable batteries</topic><topic>Retention</topic><topic>Robustness</topic><topic>Specific capacity</topic><topic>Storage batteries</topic><topic>Structural damage</topic><topic>Surface reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xianlu</creatorcontrib><creatorcontrib>Pan, Xuenan</creatorcontrib><creatorcontrib>Zhang, Dongdong</creatorcontrib><creatorcontrib>Fang, Zhi</creatorcontrib><creatorcontrib>Xu, Shang</creatorcontrib><creatorcontrib>Ma, Yu</creatorcontrib><creatorcontrib>Liu, Qiao</creatorcontrib><creatorcontrib>Shao, Gang</creatorcontrib><creatorcontrib>Fu, Dingfa</creatorcontrib><creatorcontrib>Teng, Jie</creatorcontrib><creatorcontrib>Yang, Weiyou</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Xianlu</au><au>Pan, Xuenan</au><au>Zhang, Dongdong</au><au>Fang, Zhi</au><au>Xu, Shang</au><au>Ma, Yu</au><au>Liu, Qiao</au><au>Shao, Gang</au><au>Fu, Dingfa</au><au>Teng, Jie</au><au>Yang, Weiyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust high-temperature potassium-ion batteries enabled by carboxyl functional group energy storage</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-08-31</date><risdate>2021</risdate><volume>118</volume><issue>35</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The popularly reported energy storage mechanisms of potassium-ion batteries (PIBs) are based on alloy-, de-intercalation-, and conversion-type processes, which inevitably lead to structural damage of the electrodes caused by intercalation/de-intercalation of K⁺ with a relatively large radius, which is accompanied by poor cycle stabilities. Here, we report the exploration of robust high-temperature PIBs enabled by a carboxyl functional group energy storage mechanism, which is based on an example of p-phthalic acid (PTA) with two carboxyl functional groups as the redox centers. In such a case, the intercalation/de-intercalation of K⁺ can be performed via surface reactions with relieved volume change, thus favoring excellent cycle stability for PIBs against high temperatures. As proof of concept, at the fixed working temperature of 62.5 °C, the initial discharge and charge specific capacities of the PTA electrode are ∼660 and 165 mA·h·g−1, respectively, at a current density of 100 mA·g−1, with 86% specific capacity retention after 160 cycles. Meanwhile, it delivers 81.5% specific capacity retention after 390 cycles under a high current density of 500 mA·g−1. The cycle stabilities achieved under both low and high current densities are the best among those of high-temperature PIBs reported previously.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34429362</pmid><doi>10.1073/pnas.2110912118</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7312-7131</orcidid><orcidid>https://orcid.org/0000-0003-3635-7063</orcidid><orcidid>https://orcid.org/0000-0002-3607-3514</orcidid><orcidid>https://orcid.org/0000-0002-5524-1122</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-08, Vol.118 (35), p.1-6 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8536337 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Batteries Current density Electrodes Energy storage Functional groups High current High temperature Intercalation Phthalic acid Physical Sciences Potassium Rechargeable batteries Retention Robustness Specific capacity Storage batteries Structural damage Surface reactions |
title | Robust high-temperature potassium-ion batteries enabled by carboxyl functional group energy storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20high-temperature%20potassium-ion%20batteries%20enabled%20by%20carboxyl%20functional%20group%20energy%20storage&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lu,%20Xianlu&rft.date=2021-08-31&rft.volume=118&rft.issue=35&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2110912118&rft_dat=%3Cjstor_pubme%3E27075295%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569412861&rft_id=info:pmid/34429362&rft_jstor_id=27075295&rfr_iscdi=true |