Robust high-temperature potassium-ion batteries enabled by carboxyl functional group energy storage

The popularly reported energy storage mechanisms of potassium-ion batteries (PIBs) are based on alloy-, de-intercalation-, and conversion-type processes, which inevitably lead to structural damage of the electrodes caused by intercalation/de-intercalation of K⁺ with a relatively large radius, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-08, Vol.118 (35), p.1-6
Hauptverfasser: Lu, Xianlu, Pan, Xuenan, Zhang, Dongdong, Fang, Zhi, Xu, Shang, Ma, Yu, Liu, Qiao, Shao, Gang, Fu, Dingfa, Teng, Jie, Yang, Weiyou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 35
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Lu, Xianlu
Pan, Xuenan
Zhang, Dongdong
Fang, Zhi
Xu, Shang
Ma, Yu
Liu, Qiao
Shao, Gang
Fu, Dingfa
Teng, Jie
Yang, Weiyou
description The popularly reported energy storage mechanisms of potassium-ion batteries (PIBs) are based on alloy-, de-intercalation-, and conversion-type processes, which inevitably lead to structural damage of the electrodes caused by intercalation/de-intercalation of K⁺ with a relatively large radius, which is accompanied by poor cycle stabilities. Here, we report the exploration of robust high-temperature PIBs enabled by a carboxyl functional group energy storage mechanism, which is based on an example of p-phthalic acid (PTA) with two carboxyl functional groups as the redox centers. In such a case, the intercalation/de-intercalation of K⁺ can be performed via surface reactions with relieved volume change, thus favoring excellent cycle stability for PIBs against high temperatures. As proof of concept, at the fixed working temperature of 62.5 °C, the initial discharge and charge specific capacities of the PTA electrode are ∼660 and 165 mA·h·g−1, respectively, at a current density of 100 mA·g−1, with 86% specific capacity retention after 160 cycles. Meanwhile, it delivers 81.5% specific capacity retention after 390 cycles under a high current density of 500 mA·g−1. The cycle stabilities achieved under both low and high current densities are the best among those of high-temperature PIBs reported previously.
doi_str_mv 10.1073/pnas.2110912118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8536337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27075295</jstor_id><sourcerecordid>27075295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-9387fcb7fe2a44060d652175330286569e859482369e6662d6e1e418e81fbe3d3</originalsourceid><addsrcrecordid>eNpdkcuL1EAQxhtR3HH17EkJePGS3X4_LoIsvmBBED03naSSyZCkYz8W57-346zj41JVUL_6qKoPoecEXxGs2PW6uHhFCcGGlKgfoN1W1pIb_BDtMKaq1pzyC_QkxgPG2AiNH6MLxjk1TNIdar_4JsdU7cdhXyeYVwgu5QDV6pOLccxzPfqlalxKEEaIFSyumaCrmmPVutD4H8ep6vPSpoK5qRqCz2uBIAzHKiYf3ABP0aPeTRGe3edL9O39u683H-vbzx8-3by9rVvOWaoN06pvG9UDdZxjiTspKFGCMUy1FNKAFoZrykolpaSdBAKcaNCkb4B17BK9OemuuZmha2FJwU12DePswtF6N9p_O8u4t4O_s1owyZgqAq_vBYL_niEmO4-xhWlyC_gcLRWSc62w2NBX_6EHn0P5wC_KcFJWJoW6PlFt8DEG6M_LEGw3A-1moP1jYJl4-fcNZ_63YwV4cQIO23fPfaqwEtQI9hNe36IU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569412861</pqid></control><display><type>article</type><title>Robust high-temperature potassium-ion batteries enabled by carboxyl functional group energy storage</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lu, Xianlu ; Pan, Xuenan ; Zhang, Dongdong ; Fang, Zhi ; Xu, Shang ; Ma, Yu ; Liu, Qiao ; Shao, Gang ; Fu, Dingfa ; Teng, Jie ; Yang, Weiyou</creator><creatorcontrib>Lu, Xianlu ; Pan, Xuenan ; Zhang, Dongdong ; Fang, Zhi ; Xu, Shang ; Ma, Yu ; Liu, Qiao ; Shao, Gang ; Fu, Dingfa ; Teng, Jie ; Yang, Weiyou</creatorcontrib><description>The popularly reported energy storage mechanisms of potassium-ion batteries (PIBs) are based on alloy-, de-intercalation-, and conversion-type processes, which inevitably lead to structural damage of the electrodes caused by intercalation/de-intercalation of K⁺ with a relatively large radius, which is accompanied by poor cycle stabilities. Here, we report the exploration of robust high-temperature PIBs enabled by a carboxyl functional group energy storage mechanism, which is based on an example of p-phthalic acid (PTA) with two carboxyl functional groups as the redox centers. In such a case, the intercalation/de-intercalation of K⁺ can be performed via surface reactions with relieved volume change, thus favoring excellent cycle stability for PIBs against high temperatures. As proof of concept, at the fixed working temperature of 62.5 °C, the initial discharge and charge specific capacities of the PTA electrode are ∼660 and 165 mA·h·g−1, respectively, at a current density of 100 mA·g−1, with 86% specific capacity retention after 160 cycles. Meanwhile, it delivers 81.5% specific capacity retention after 390 cycles under a high current density of 500 mA·g−1. The cycle stabilities achieved under both low and high current densities are the best among those of high-temperature PIBs reported previously.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2110912118</identifier><identifier>PMID: 34429362</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Batteries ; Current density ; Electrodes ; Energy storage ; Functional groups ; High current ; High temperature ; Intercalation ; Phthalic acid ; Physical Sciences ; Potassium ; Rechargeable batteries ; Retention ; Robustness ; Specific capacity ; Storage batteries ; Structural damage ; Surface reactions</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-08, Vol.118 (35), p.1-6</ispartof><rights>Copyright National Academy of Sciences Aug 31, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-9387fcb7fe2a44060d652175330286569e859482369e6662d6e1e418e81fbe3d3</citedby><cites>FETCH-LOGICAL-c443t-9387fcb7fe2a44060d652175330286569e859482369e6662d6e1e418e81fbe3d3</cites><orcidid>0000-0001-7312-7131 ; 0000-0003-3635-7063 ; 0000-0002-3607-3514 ; 0000-0002-5524-1122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27075295$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27075295$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34429362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Xianlu</creatorcontrib><creatorcontrib>Pan, Xuenan</creatorcontrib><creatorcontrib>Zhang, Dongdong</creatorcontrib><creatorcontrib>Fang, Zhi</creatorcontrib><creatorcontrib>Xu, Shang</creatorcontrib><creatorcontrib>Ma, Yu</creatorcontrib><creatorcontrib>Liu, Qiao</creatorcontrib><creatorcontrib>Shao, Gang</creatorcontrib><creatorcontrib>Fu, Dingfa</creatorcontrib><creatorcontrib>Teng, Jie</creatorcontrib><creatorcontrib>Yang, Weiyou</creatorcontrib><title>Robust high-temperature potassium-ion batteries enabled by carboxyl functional group energy storage</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The popularly reported energy storage mechanisms of potassium-ion batteries (PIBs) are based on alloy-, de-intercalation-, and conversion-type processes, which inevitably lead to structural damage of the electrodes caused by intercalation/de-intercalation of K⁺ with a relatively large radius, which is accompanied by poor cycle stabilities. Here, we report the exploration of robust high-temperature PIBs enabled by a carboxyl functional group energy storage mechanism, which is based on an example of p-phthalic acid (PTA) with two carboxyl functional groups as the redox centers. In such a case, the intercalation/de-intercalation of K⁺ can be performed via surface reactions with relieved volume change, thus favoring excellent cycle stability for PIBs against high temperatures. As proof of concept, at the fixed working temperature of 62.5 °C, the initial discharge and charge specific capacities of the PTA electrode are ∼660 and 165 mA·h·g−1, respectively, at a current density of 100 mA·g−1, with 86% specific capacity retention after 160 cycles. Meanwhile, it delivers 81.5% specific capacity retention after 390 cycles under a high current density of 500 mA·g−1. The cycle stabilities achieved under both low and high current densities are the best among those of high-temperature PIBs reported previously.</description><subject>Batteries</subject><subject>Current density</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Functional groups</subject><subject>High current</subject><subject>High temperature</subject><subject>Intercalation</subject><subject>Phthalic acid</subject><subject>Physical Sciences</subject><subject>Potassium</subject><subject>Rechargeable batteries</subject><subject>Retention</subject><subject>Robustness</subject><subject>Specific capacity</subject><subject>Storage batteries</subject><subject>Structural damage</subject><subject>Surface reactions</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkcuL1EAQxhtR3HH17EkJePGS3X4_LoIsvmBBED03naSSyZCkYz8W57-346zj41JVUL_6qKoPoecEXxGs2PW6uHhFCcGGlKgfoN1W1pIb_BDtMKaq1pzyC_QkxgPG2AiNH6MLxjk1TNIdar_4JsdU7cdhXyeYVwgu5QDV6pOLccxzPfqlalxKEEaIFSyumaCrmmPVutD4H8ep6vPSpoK5qRqCz2uBIAzHKiYf3ABP0aPeTRGe3edL9O39u683H-vbzx8-3by9rVvOWaoN06pvG9UDdZxjiTspKFGCMUy1FNKAFoZrykolpaSdBAKcaNCkb4B17BK9OemuuZmha2FJwU12DePswtF6N9p_O8u4t4O_s1owyZgqAq_vBYL_niEmO4-xhWlyC_gcLRWSc62w2NBX_6EHn0P5wC_KcFJWJoW6PlFt8DEG6M_LEGw3A-1moP1jYJl4-fcNZ_63YwV4cQIO23fPfaqwEtQI9hNe36IU</recordid><startdate>20210831</startdate><enddate>20210831</enddate><creator>Lu, Xianlu</creator><creator>Pan, Xuenan</creator><creator>Zhang, Dongdong</creator><creator>Fang, Zhi</creator><creator>Xu, Shang</creator><creator>Ma, Yu</creator><creator>Liu, Qiao</creator><creator>Shao, Gang</creator><creator>Fu, Dingfa</creator><creator>Teng, Jie</creator><creator>Yang, Weiyou</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7312-7131</orcidid><orcidid>https://orcid.org/0000-0003-3635-7063</orcidid><orcidid>https://orcid.org/0000-0002-3607-3514</orcidid><orcidid>https://orcid.org/0000-0002-5524-1122</orcidid></search><sort><creationdate>20210831</creationdate><title>Robust high-temperature potassium-ion batteries enabled by carboxyl functional group energy storage</title><author>Lu, Xianlu ; Pan, Xuenan ; Zhang, Dongdong ; Fang, Zhi ; Xu, Shang ; Ma, Yu ; Liu, Qiao ; Shao, Gang ; Fu, Dingfa ; Teng, Jie ; Yang, Weiyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-9387fcb7fe2a44060d652175330286569e859482369e6662d6e1e418e81fbe3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Batteries</topic><topic>Current density</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Functional groups</topic><topic>High current</topic><topic>High temperature</topic><topic>Intercalation</topic><topic>Phthalic acid</topic><topic>Physical Sciences</topic><topic>Potassium</topic><topic>Rechargeable batteries</topic><topic>Retention</topic><topic>Robustness</topic><topic>Specific capacity</topic><topic>Storage batteries</topic><topic>Structural damage</topic><topic>Surface reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xianlu</creatorcontrib><creatorcontrib>Pan, Xuenan</creatorcontrib><creatorcontrib>Zhang, Dongdong</creatorcontrib><creatorcontrib>Fang, Zhi</creatorcontrib><creatorcontrib>Xu, Shang</creatorcontrib><creatorcontrib>Ma, Yu</creatorcontrib><creatorcontrib>Liu, Qiao</creatorcontrib><creatorcontrib>Shao, Gang</creatorcontrib><creatorcontrib>Fu, Dingfa</creatorcontrib><creatorcontrib>Teng, Jie</creatorcontrib><creatorcontrib>Yang, Weiyou</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Xianlu</au><au>Pan, Xuenan</au><au>Zhang, Dongdong</au><au>Fang, Zhi</au><au>Xu, Shang</au><au>Ma, Yu</au><au>Liu, Qiao</au><au>Shao, Gang</au><au>Fu, Dingfa</au><au>Teng, Jie</au><au>Yang, Weiyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust high-temperature potassium-ion batteries enabled by carboxyl functional group energy storage</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-08-31</date><risdate>2021</risdate><volume>118</volume><issue>35</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The popularly reported energy storage mechanisms of potassium-ion batteries (PIBs) are based on alloy-, de-intercalation-, and conversion-type processes, which inevitably lead to structural damage of the electrodes caused by intercalation/de-intercalation of K⁺ with a relatively large radius, which is accompanied by poor cycle stabilities. Here, we report the exploration of robust high-temperature PIBs enabled by a carboxyl functional group energy storage mechanism, which is based on an example of p-phthalic acid (PTA) with two carboxyl functional groups as the redox centers. In such a case, the intercalation/de-intercalation of K⁺ can be performed via surface reactions with relieved volume change, thus favoring excellent cycle stability for PIBs against high temperatures. As proof of concept, at the fixed working temperature of 62.5 °C, the initial discharge and charge specific capacities of the PTA electrode are ∼660 and 165 mA·h·g−1, respectively, at a current density of 100 mA·g−1, with 86% specific capacity retention after 160 cycles. Meanwhile, it delivers 81.5% specific capacity retention after 390 cycles under a high current density of 500 mA·g−1. The cycle stabilities achieved under both low and high current densities are the best among those of high-temperature PIBs reported previously.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34429362</pmid><doi>10.1073/pnas.2110912118</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7312-7131</orcidid><orcidid>https://orcid.org/0000-0003-3635-7063</orcidid><orcidid>https://orcid.org/0000-0002-3607-3514</orcidid><orcidid>https://orcid.org/0000-0002-5524-1122</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-08, Vol.118 (35), p.1-6
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8536337
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Batteries
Current density
Electrodes
Energy storage
Functional groups
High current
High temperature
Intercalation
Phthalic acid
Physical Sciences
Potassium
Rechargeable batteries
Retention
Robustness
Specific capacity
Storage batteries
Structural damage
Surface reactions
title Robust high-temperature potassium-ion batteries enabled by carboxyl functional group energy storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20high-temperature%20potassium-ion%20batteries%20enabled%20by%20carboxyl%20functional%20group%20energy%20storage&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lu,%20Xianlu&rft.date=2021-08-31&rft.volume=118&rft.issue=35&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2110912118&rft_dat=%3Cjstor_pubme%3E27075295%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569412861&rft_id=info:pmid/34429362&rft_jstor_id=27075295&rfr_iscdi=true