Variable strategies to solve risk–reward tradeoffs in carnivore communities
Mesopredator release theory suggests that dominant predators suppress subordinate carnivores and ultimately shape community dynamics, but the assumption that subordinate species are only negatively affected ignores the possibility of facilitation through scavenging. We examined the interplay within...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-08, Vol.118 (35), p.1-9 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 35 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Ruprecht, Joel Eriksson, Charlotte E. Forrester, Tavis D. Spitz, Derek B. Clark, Darren A. Wisdom, Michael J. Bianco, Marcus Rowland, Mary M. Smith, Joshua B. Johnson, Bruce K. Levi, Taal |
description | Mesopredator release theory suggests that dominant predators suppress subordinate carnivores and ultimately shape community dynamics, but the assumption that subordinate species are only negatively affected ignores the possibility of facilitation through scavenging. We examined the interplay within a carnivore community consisting of cougars, coyotes, black bears, and bobcats using contemporaneous Global Positioning System telemetry data from 51 individuals; diet analysis from 972 DNA-metabarcoded scats; and data from 128 physical investigations of cougar kill sites, 28 of which were monitored with remote cameras. Resource provisioning from competitively dominant cougars to coyotes through scavenging was so prolific as to be an overwhelming determinant of coyote behavior, space use, and resource acquisition. This was evident via the strong attraction of coyotes to cougar kill sites, frequent scavenging of cougar-killed prey, and coyote diets that nearly matched cougars in the magnitude of ungulate consumption. Yet coyotes were often killed by cougars and used space to minimize encounters, complicating the fitness benefits gained from scavenging. We estimated that 23% (95% CI: 8 to 55%) of the coyote population in our study area was killed by cougars annually, suggesting that coyote interactions with cougars are a complex behavioral game of risk and reward. In contrast, we found no indication that bobcat space use or diet was influenced by cougars. Black bears avoided cougars, but there was no evidence of attraction to cougar kill sites and much lower levels of ungulate consumption and carcass visitation than for coyotes. Interspecific interactions among carnivores are multifaceted, encompassing both suppression and facilitation. |
doi_str_mv | 10.1073/pnas.2101614118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8536332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27075323</jstor_id><sourcerecordid>27075323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-82dc831a7db378b35e444f3ce33efb962d3a3b93ff9706e369e6291cc8ac0f953</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxS0EotvCmRMoEpde0toex7EvSKiigNSKC3C1HGdcvCTxYieLuPEd-Ib9JPVqy_LnNIf5vad58wh5xugZoy2cbyabzzijTDLBmHpAVoxqVkuh6UOyopS3tRJcHJHjnNeUUt0o-pgcgRBcQ6NX5PqzTcF2A1Z5TnbGm4C5mmOV47DFKoX89fbnr4TfbeqrAvQYvc9VmCpn0xS2MWHl4jguU5iL8gl55O2Q8en9PCGfLt98vHhXX314-_7i9VXthIC5Vrx3Cpht-w5a1UGDQggPDgHQd1ryHix0GrzXLZUIUqPkmjmnrKNeN3BCXu19N0s3Yu9wKrcNZpPCaNMPE20w_26m8MXcxK1RDUgAXgxO7w1S_LZgns0YssNhsBPGJRveSCFUW_5X0Jf_oeu4pKnE21FaMA6SFup8T7kUc07oD8cwanZVmV1V5k9VRfHi7wwH_nc3BXi-B9Z5jumw5y1tmxIB7gAYT5vS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569412360</pqid></control><display><type>article</type><title>Variable strategies to solve risk–reward tradeoffs in carnivore communities</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ruprecht, Joel ; Eriksson, Charlotte E. ; Forrester, Tavis D. ; Spitz, Derek B. ; Clark, Darren A. ; Wisdom, Michael J. ; Bianco, Marcus ; Rowland, Mary M. ; Smith, Joshua B. ; Johnson, Bruce K. ; Levi, Taal</creator><creatorcontrib>Ruprecht, Joel ; Eriksson, Charlotte E. ; Forrester, Tavis D. ; Spitz, Derek B. ; Clark, Darren A. ; Wisdom, Michael J. ; Bianco, Marcus ; Rowland, Mary M. ; Smith, Joshua B. ; Johnson, Bruce K. ; Levi, Taal</creatorcontrib><description>Mesopredator release theory suggests that dominant predators suppress subordinate carnivores and ultimately shape community dynamics, but the assumption that subordinate species are only negatively affected ignores the possibility of facilitation through scavenging. We examined the interplay within a carnivore community consisting of cougars, coyotes, black bears, and bobcats using contemporaneous Global Positioning System telemetry data from 51 individuals; diet analysis from 972 DNA-metabarcoded scats; and data from 128 physical investigations of cougar kill sites, 28 of which were monitored with remote cameras. Resource provisioning from competitively dominant cougars to coyotes through scavenging was so prolific as to be an overwhelming determinant of coyote behavior, space use, and resource acquisition. This was evident via the strong attraction of coyotes to cougar kill sites, frequent scavenging of cougar-killed prey, and coyote diets that nearly matched cougars in the magnitude of ungulate consumption. Yet coyotes were often killed by cougars and used space to minimize encounters, complicating the fitness benefits gained from scavenging. We estimated that 23% (95% CI: 8 to 55%) of the coyote population in our study area was killed by cougars annually, suggesting that coyote interactions with cougars are a complex behavioral game of risk and reward. In contrast, we found no indication that bobcat space use or diet was influenced by cougars. Black bears avoided cougars, but there was no evidence of attraction to cougar kill sites and much lower levels of ungulate consumption and carcass visitation than for coyotes. Interspecific interactions among carnivores are multifaceted, encompassing both suppression and facilitation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2101614118</identifier><identifier>PMID: 34429359</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Attraction ; Bears ; Biological Sciences ; Cameras ; Canis latrans ; Carnivora - physiology ; Carnivores ; Consumption ; Coyotes ; Coyotes - physiology ; Diet ; Ecosystem ; Food Chain ; Global positioning systems ; GPS ; Interspecific relationships ; Lynx - physiology ; Lynx rufus ; Population Dynamics ; Population studies ; Predators ; Predatory Behavior ; Prey ; Provisioning ; Puma - physiology ; Reinforcement ; Remote monitoring ; Resource allocation ; Reward ; Risk taking ; Scavenging ; Telemetry ; Ursidae - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-08, Vol.118 (35), p.1-9</ispartof><rights>Copyright National Academy of Sciences Aug 31, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-82dc831a7db378b35e444f3ce33efb962d3a3b93ff9706e369e6291cc8ac0f953</citedby><cites>FETCH-LOGICAL-c443t-82dc831a7db378b35e444f3ce33efb962d3a3b93ff9706e369e6291cc8ac0f953</cites><orcidid>0000-0002-8738-9826 ; 0000-0002-9443-7582 ; 0000-0001-6762-4115 ; 0000-0001-7899-4277 ; 0000-0001-5766-8683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27075323$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27075323$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34429359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruprecht, Joel</creatorcontrib><creatorcontrib>Eriksson, Charlotte E.</creatorcontrib><creatorcontrib>Forrester, Tavis D.</creatorcontrib><creatorcontrib>Spitz, Derek B.</creatorcontrib><creatorcontrib>Clark, Darren A.</creatorcontrib><creatorcontrib>Wisdom, Michael J.</creatorcontrib><creatorcontrib>Bianco, Marcus</creatorcontrib><creatorcontrib>Rowland, Mary M.</creatorcontrib><creatorcontrib>Smith, Joshua B.</creatorcontrib><creatorcontrib>Johnson, Bruce K.</creatorcontrib><creatorcontrib>Levi, Taal</creatorcontrib><title>Variable strategies to solve risk–reward tradeoffs in carnivore communities</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mesopredator release theory suggests that dominant predators suppress subordinate carnivores and ultimately shape community dynamics, but the assumption that subordinate species are only negatively affected ignores the possibility of facilitation through scavenging. We examined the interplay within a carnivore community consisting of cougars, coyotes, black bears, and bobcats using contemporaneous Global Positioning System telemetry data from 51 individuals; diet analysis from 972 DNA-metabarcoded scats; and data from 128 physical investigations of cougar kill sites, 28 of which were monitored with remote cameras. Resource provisioning from competitively dominant cougars to coyotes through scavenging was so prolific as to be an overwhelming determinant of coyote behavior, space use, and resource acquisition. This was evident via the strong attraction of coyotes to cougar kill sites, frequent scavenging of cougar-killed prey, and coyote diets that nearly matched cougars in the magnitude of ungulate consumption. Yet coyotes were often killed by cougars and used space to minimize encounters, complicating the fitness benefits gained from scavenging. We estimated that 23% (95% CI: 8 to 55%) of the coyote population in our study area was killed by cougars annually, suggesting that coyote interactions with cougars are a complex behavioral game of risk and reward. In contrast, we found no indication that bobcat space use or diet was influenced by cougars. Black bears avoided cougars, but there was no evidence of attraction to cougar kill sites and much lower levels of ungulate consumption and carcass visitation than for coyotes. Interspecific interactions among carnivores are multifaceted, encompassing both suppression and facilitation.</description><subject>Animals</subject><subject>Attraction</subject><subject>Bears</subject><subject>Biological Sciences</subject><subject>Cameras</subject><subject>Canis latrans</subject><subject>Carnivora - physiology</subject><subject>Carnivores</subject><subject>Consumption</subject><subject>Coyotes</subject><subject>Coyotes - physiology</subject><subject>Diet</subject><subject>Ecosystem</subject><subject>Food Chain</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Interspecific relationships</subject><subject>Lynx - physiology</subject><subject>Lynx rufus</subject><subject>Population Dynamics</subject><subject>Population studies</subject><subject>Predators</subject><subject>Predatory Behavior</subject><subject>Prey</subject><subject>Provisioning</subject><subject>Puma - physiology</subject><subject>Reinforcement</subject><subject>Remote monitoring</subject><subject>Resource allocation</subject><subject>Reward</subject><subject>Risk taking</subject><subject>Scavenging</subject><subject>Telemetry</subject><subject>Ursidae - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU9v1DAQxS0EotvCmRMoEpde0toex7EvSKiigNSKC3C1HGdcvCTxYieLuPEd-Ib9JPVqy_LnNIf5vad58wh5xugZoy2cbyabzzijTDLBmHpAVoxqVkuh6UOyopS3tRJcHJHjnNeUUt0o-pgcgRBcQ6NX5PqzTcF2A1Z5TnbGm4C5mmOV47DFKoX89fbnr4TfbeqrAvQYvc9VmCpn0xS2MWHl4jguU5iL8gl55O2Q8en9PCGfLt98vHhXX314-_7i9VXthIC5Vrx3Cpht-w5a1UGDQggPDgHQd1ryHix0GrzXLZUIUqPkmjmnrKNeN3BCXu19N0s3Yu9wKrcNZpPCaNMPE20w_26m8MXcxK1RDUgAXgxO7w1S_LZgns0YssNhsBPGJRveSCFUW_5X0Jf_oeu4pKnE21FaMA6SFup8T7kUc07oD8cwanZVmV1V5k9VRfHi7wwH_nc3BXi-B9Z5jumw5y1tmxIB7gAYT5vS</recordid><startdate>20210831</startdate><enddate>20210831</enddate><creator>Ruprecht, Joel</creator><creator>Eriksson, Charlotte E.</creator><creator>Forrester, Tavis D.</creator><creator>Spitz, Derek B.</creator><creator>Clark, Darren A.</creator><creator>Wisdom, Michael J.</creator><creator>Bianco, Marcus</creator><creator>Rowland, Mary M.</creator><creator>Smith, Joshua B.</creator><creator>Johnson, Bruce K.</creator><creator>Levi, Taal</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8738-9826</orcidid><orcidid>https://orcid.org/0000-0002-9443-7582</orcidid><orcidid>https://orcid.org/0000-0001-6762-4115</orcidid><orcidid>https://orcid.org/0000-0001-7899-4277</orcidid><orcidid>https://orcid.org/0000-0001-5766-8683</orcidid></search><sort><creationdate>20210831</creationdate><title>Variable strategies to solve risk–reward tradeoffs in carnivore communities</title><author>Ruprecht, Joel ; Eriksson, Charlotte E. ; Forrester, Tavis D. ; Spitz, Derek B. ; Clark, Darren A. ; Wisdom, Michael J. ; Bianco, Marcus ; Rowland, Mary M. ; Smith, Joshua B. ; Johnson, Bruce K. ; Levi, Taal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-82dc831a7db378b35e444f3ce33efb962d3a3b93ff9706e369e6291cc8ac0f953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Attraction</topic><topic>Bears</topic><topic>Biological Sciences</topic><topic>Cameras</topic><topic>Canis latrans</topic><topic>Carnivora - physiology</topic><topic>Carnivores</topic><topic>Consumption</topic><topic>Coyotes</topic><topic>Coyotes - physiology</topic><topic>Diet</topic><topic>Ecosystem</topic><topic>Food Chain</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Interspecific relationships</topic><topic>Lynx - physiology</topic><topic>Lynx rufus</topic><topic>Population Dynamics</topic><topic>Population studies</topic><topic>Predators</topic><topic>Predatory Behavior</topic><topic>Prey</topic><topic>Provisioning</topic><topic>Puma - physiology</topic><topic>Reinforcement</topic><topic>Remote monitoring</topic><topic>Resource allocation</topic><topic>Reward</topic><topic>Risk taking</topic><topic>Scavenging</topic><topic>Telemetry</topic><topic>Ursidae - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruprecht, Joel</creatorcontrib><creatorcontrib>Eriksson, Charlotte E.</creatorcontrib><creatorcontrib>Forrester, Tavis D.</creatorcontrib><creatorcontrib>Spitz, Derek B.</creatorcontrib><creatorcontrib>Clark, Darren A.</creatorcontrib><creatorcontrib>Wisdom, Michael J.</creatorcontrib><creatorcontrib>Bianco, Marcus</creatorcontrib><creatorcontrib>Rowland, Mary M.</creatorcontrib><creatorcontrib>Smith, Joshua B.</creatorcontrib><creatorcontrib>Johnson, Bruce K.</creatorcontrib><creatorcontrib>Levi, Taal</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruprecht, Joel</au><au>Eriksson, Charlotte E.</au><au>Forrester, Tavis D.</au><au>Spitz, Derek B.</au><au>Clark, Darren A.</au><au>Wisdom, Michael J.</au><au>Bianco, Marcus</au><au>Rowland, Mary M.</au><au>Smith, Joshua B.</au><au>Johnson, Bruce K.</au><au>Levi, Taal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variable strategies to solve risk–reward tradeoffs in carnivore communities</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-08-31</date><risdate>2021</risdate><volume>118</volume><issue>35</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Mesopredator release theory suggests that dominant predators suppress subordinate carnivores and ultimately shape community dynamics, but the assumption that subordinate species are only negatively affected ignores the possibility of facilitation through scavenging. We examined the interplay within a carnivore community consisting of cougars, coyotes, black bears, and bobcats using contemporaneous Global Positioning System telemetry data from 51 individuals; diet analysis from 972 DNA-metabarcoded scats; and data from 128 physical investigations of cougar kill sites, 28 of which were monitored with remote cameras. Resource provisioning from competitively dominant cougars to coyotes through scavenging was so prolific as to be an overwhelming determinant of coyote behavior, space use, and resource acquisition. This was evident via the strong attraction of coyotes to cougar kill sites, frequent scavenging of cougar-killed prey, and coyote diets that nearly matched cougars in the magnitude of ungulate consumption. Yet coyotes were often killed by cougars and used space to minimize encounters, complicating the fitness benefits gained from scavenging. We estimated that 23% (95% CI: 8 to 55%) of the coyote population in our study area was killed by cougars annually, suggesting that coyote interactions with cougars are a complex behavioral game of risk and reward. In contrast, we found no indication that bobcat space use or diet was influenced by cougars. Black bears avoided cougars, but there was no evidence of attraction to cougar kill sites and much lower levels of ungulate consumption and carcass visitation than for coyotes. Interspecific interactions among carnivores are multifaceted, encompassing both suppression and facilitation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34429359</pmid><doi>10.1073/pnas.2101614118</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8738-9826</orcidid><orcidid>https://orcid.org/0000-0002-9443-7582</orcidid><orcidid>https://orcid.org/0000-0001-6762-4115</orcidid><orcidid>https://orcid.org/0000-0001-7899-4277</orcidid><orcidid>https://orcid.org/0000-0001-5766-8683</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-08, Vol.118 (35), p.1-9 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8536332 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Attraction Bears Biological Sciences Cameras Canis latrans Carnivora - physiology Carnivores Consumption Coyotes Coyotes - physiology Diet Ecosystem Food Chain Global positioning systems GPS Interspecific relationships Lynx - physiology Lynx rufus Population Dynamics Population studies Predators Predatory Behavior Prey Provisioning Puma - physiology Reinforcement Remote monitoring Resource allocation Reward Risk taking Scavenging Telemetry Ursidae - physiology |
title | Variable strategies to solve risk–reward tradeoffs in carnivore communities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variable%20strategies%20to%20solve%20risk%E2%80%93reward%20tradeoffs%20in%20carnivore%20communities&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ruprecht,%20Joel&rft.date=2021-08-31&rft.volume=118&rft.issue=35&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2101614118&rft_dat=%3Cjstor_pubme%3E27075323%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569412360&rft_id=info:pmid/34429359&rft_jstor_id=27075323&rfr_iscdi=true |