Variable strategies to solve risk–reward tradeoffs in carnivore communities

Mesopredator release theory suggests that dominant predators suppress subordinate carnivores and ultimately shape community dynamics, but the assumption that subordinate species are only negatively affected ignores the possibility of facilitation through scavenging. We examined the interplay within...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-08, Vol.118 (35), p.1-9
Hauptverfasser: Ruprecht, Joel, Eriksson, Charlotte E., Forrester, Tavis D., Spitz, Derek B., Clark, Darren A., Wisdom, Michael J., Bianco, Marcus, Rowland, Mary M., Smith, Joshua B., Johnson, Bruce K., Levi, Taal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 35
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Ruprecht, Joel
Eriksson, Charlotte E.
Forrester, Tavis D.
Spitz, Derek B.
Clark, Darren A.
Wisdom, Michael J.
Bianco, Marcus
Rowland, Mary M.
Smith, Joshua B.
Johnson, Bruce K.
Levi, Taal
description Mesopredator release theory suggests that dominant predators suppress subordinate carnivores and ultimately shape community dynamics, but the assumption that subordinate species are only negatively affected ignores the possibility of facilitation through scavenging. We examined the interplay within a carnivore community consisting of cougars, coyotes, black bears, and bobcats using contemporaneous Global Positioning System telemetry data from 51 individuals; diet analysis from 972 DNA-metabarcoded scats; and data from 128 physical investigations of cougar kill sites, 28 of which were monitored with remote cameras. Resource provisioning from competitively dominant cougars to coyotes through scavenging was so prolific as to be an overwhelming determinant of coyote behavior, space use, and resource acquisition. This was evident via the strong attraction of coyotes to cougar kill sites, frequent scavenging of cougar-killed prey, and coyote diets that nearly matched cougars in the magnitude of ungulate consumption. Yet coyotes were often killed by cougars and used space to minimize encounters, complicating the fitness benefits gained from scavenging. We estimated that 23% (95% CI: 8 to 55%) of the coyote population in our study area was killed by cougars annually, suggesting that coyote interactions with cougars are a complex behavioral game of risk and reward. In contrast, we found no indication that bobcat space use or diet was influenced by cougars. Black bears avoided cougars, but there was no evidence of attraction to cougar kill sites and much lower levels of ungulate consumption and carcass visitation than for coyotes. Interspecific interactions among carnivores are multifaceted, encompassing both suppression and facilitation.
doi_str_mv 10.1073/pnas.2101614118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8536332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27075323</jstor_id><sourcerecordid>27075323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-82dc831a7db378b35e444f3ce33efb962d3a3b93ff9706e369e6291cc8ac0f953</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxS0EotvCmRMoEpde0toex7EvSKiigNSKC3C1HGdcvCTxYieLuPEd-Ib9JPVqy_LnNIf5vad58wh5xugZoy2cbyabzzijTDLBmHpAVoxqVkuh6UOyopS3tRJcHJHjnNeUUt0o-pgcgRBcQ6NX5PqzTcF2A1Z5TnbGm4C5mmOV47DFKoX89fbnr4TfbeqrAvQYvc9VmCpn0xS2MWHl4jguU5iL8gl55O2Q8en9PCGfLt98vHhXX314-_7i9VXthIC5Vrx3Cpht-w5a1UGDQggPDgHQd1ryHix0GrzXLZUIUqPkmjmnrKNeN3BCXu19N0s3Yu9wKrcNZpPCaNMPE20w_26m8MXcxK1RDUgAXgxO7w1S_LZgns0YssNhsBPGJRveSCFUW_5X0Jf_oeu4pKnE21FaMA6SFup8T7kUc07oD8cwanZVmV1V5k9VRfHi7wwH_nc3BXi-B9Z5jumw5y1tmxIB7gAYT5vS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569412360</pqid></control><display><type>article</type><title>Variable strategies to solve risk–reward tradeoffs in carnivore communities</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ruprecht, Joel ; Eriksson, Charlotte E. ; Forrester, Tavis D. ; Spitz, Derek B. ; Clark, Darren A. ; Wisdom, Michael J. ; Bianco, Marcus ; Rowland, Mary M. ; Smith, Joshua B. ; Johnson, Bruce K. ; Levi, Taal</creator><creatorcontrib>Ruprecht, Joel ; Eriksson, Charlotte E. ; Forrester, Tavis D. ; Spitz, Derek B. ; Clark, Darren A. ; Wisdom, Michael J. ; Bianco, Marcus ; Rowland, Mary M. ; Smith, Joshua B. ; Johnson, Bruce K. ; Levi, Taal</creatorcontrib><description>Mesopredator release theory suggests that dominant predators suppress subordinate carnivores and ultimately shape community dynamics, but the assumption that subordinate species are only negatively affected ignores the possibility of facilitation through scavenging. We examined the interplay within a carnivore community consisting of cougars, coyotes, black bears, and bobcats using contemporaneous Global Positioning System telemetry data from 51 individuals; diet analysis from 972 DNA-metabarcoded scats; and data from 128 physical investigations of cougar kill sites, 28 of which were monitored with remote cameras. Resource provisioning from competitively dominant cougars to coyotes through scavenging was so prolific as to be an overwhelming determinant of coyote behavior, space use, and resource acquisition. This was evident via the strong attraction of coyotes to cougar kill sites, frequent scavenging of cougar-killed prey, and coyote diets that nearly matched cougars in the magnitude of ungulate consumption. Yet coyotes were often killed by cougars and used space to minimize encounters, complicating the fitness benefits gained from scavenging. We estimated that 23% (95% CI: 8 to 55%) of the coyote population in our study area was killed by cougars annually, suggesting that coyote interactions with cougars are a complex behavioral game of risk and reward. In contrast, we found no indication that bobcat space use or diet was influenced by cougars. Black bears avoided cougars, but there was no evidence of attraction to cougar kill sites and much lower levels of ungulate consumption and carcass visitation than for coyotes. Interspecific interactions among carnivores are multifaceted, encompassing both suppression and facilitation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2101614118</identifier><identifier>PMID: 34429359</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Attraction ; Bears ; Biological Sciences ; Cameras ; Canis latrans ; Carnivora - physiology ; Carnivores ; Consumption ; Coyotes ; Coyotes - physiology ; Diet ; Ecosystem ; Food Chain ; Global positioning systems ; GPS ; Interspecific relationships ; Lynx - physiology ; Lynx rufus ; Population Dynamics ; Population studies ; Predators ; Predatory Behavior ; Prey ; Provisioning ; Puma - physiology ; Reinforcement ; Remote monitoring ; Resource allocation ; Reward ; Risk taking ; Scavenging ; Telemetry ; Ursidae - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-08, Vol.118 (35), p.1-9</ispartof><rights>Copyright National Academy of Sciences Aug 31, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-82dc831a7db378b35e444f3ce33efb962d3a3b93ff9706e369e6291cc8ac0f953</citedby><cites>FETCH-LOGICAL-c443t-82dc831a7db378b35e444f3ce33efb962d3a3b93ff9706e369e6291cc8ac0f953</cites><orcidid>0000-0002-8738-9826 ; 0000-0002-9443-7582 ; 0000-0001-6762-4115 ; 0000-0001-7899-4277 ; 0000-0001-5766-8683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27075323$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27075323$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34429359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruprecht, Joel</creatorcontrib><creatorcontrib>Eriksson, Charlotte E.</creatorcontrib><creatorcontrib>Forrester, Tavis D.</creatorcontrib><creatorcontrib>Spitz, Derek B.</creatorcontrib><creatorcontrib>Clark, Darren A.</creatorcontrib><creatorcontrib>Wisdom, Michael J.</creatorcontrib><creatorcontrib>Bianco, Marcus</creatorcontrib><creatorcontrib>Rowland, Mary M.</creatorcontrib><creatorcontrib>Smith, Joshua B.</creatorcontrib><creatorcontrib>Johnson, Bruce K.</creatorcontrib><creatorcontrib>Levi, Taal</creatorcontrib><title>Variable strategies to solve risk–reward tradeoffs in carnivore communities</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mesopredator release theory suggests that dominant predators suppress subordinate carnivores and ultimately shape community dynamics, but the assumption that subordinate species are only negatively affected ignores the possibility of facilitation through scavenging. We examined the interplay within a carnivore community consisting of cougars, coyotes, black bears, and bobcats using contemporaneous Global Positioning System telemetry data from 51 individuals; diet analysis from 972 DNA-metabarcoded scats; and data from 128 physical investigations of cougar kill sites, 28 of which were monitored with remote cameras. Resource provisioning from competitively dominant cougars to coyotes through scavenging was so prolific as to be an overwhelming determinant of coyote behavior, space use, and resource acquisition. This was evident via the strong attraction of coyotes to cougar kill sites, frequent scavenging of cougar-killed prey, and coyote diets that nearly matched cougars in the magnitude of ungulate consumption. Yet coyotes were often killed by cougars and used space to minimize encounters, complicating the fitness benefits gained from scavenging. We estimated that 23% (95% CI: 8 to 55%) of the coyote population in our study area was killed by cougars annually, suggesting that coyote interactions with cougars are a complex behavioral game of risk and reward. In contrast, we found no indication that bobcat space use or diet was influenced by cougars. Black bears avoided cougars, but there was no evidence of attraction to cougar kill sites and much lower levels of ungulate consumption and carcass visitation than for coyotes. Interspecific interactions among carnivores are multifaceted, encompassing both suppression and facilitation.</description><subject>Animals</subject><subject>Attraction</subject><subject>Bears</subject><subject>Biological Sciences</subject><subject>Cameras</subject><subject>Canis latrans</subject><subject>Carnivora - physiology</subject><subject>Carnivores</subject><subject>Consumption</subject><subject>Coyotes</subject><subject>Coyotes - physiology</subject><subject>Diet</subject><subject>Ecosystem</subject><subject>Food Chain</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Interspecific relationships</subject><subject>Lynx - physiology</subject><subject>Lynx rufus</subject><subject>Population Dynamics</subject><subject>Population studies</subject><subject>Predators</subject><subject>Predatory Behavior</subject><subject>Prey</subject><subject>Provisioning</subject><subject>Puma - physiology</subject><subject>Reinforcement</subject><subject>Remote monitoring</subject><subject>Resource allocation</subject><subject>Reward</subject><subject>Risk taking</subject><subject>Scavenging</subject><subject>Telemetry</subject><subject>Ursidae - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU9v1DAQxS0EotvCmRMoEpde0toex7EvSKiigNSKC3C1HGdcvCTxYieLuPEd-Ib9JPVqy_LnNIf5vad58wh5xugZoy2cbyabzzijTDLBmHpAVoxqVkuh6UOyopS3tRJcHJHjnNeUUt0o-pgcgRBcQ6NX5PqzTcF2A1Z5TnbGm4C5mmOV47DFKoX89fbnr4TfbeqrAvQYvc9VmCpn0xS2MWHl4jguU5iL8gl55O2Q8en9PCGfLt98vHhXX314-_7i9VXthIC5Vrx3Cpht-w5a1UGDQggPDgHQd1ryHix0GrzXLZUIUqPkmjmnrKNeN3BCXu19N0s3Yu9wKrcNZpPCaNMPE20w_26m8MXcxK1RDUgAXgxO7w1S_LZgns0YssNhsBPGJRveSCFUW_5X0Jf_oeu4pKnE21FaMA6SFup8T7kUc07oD8cwanZVmV1V5k9VRfHi7wwH_nc3BXi-B9Z5jumw5y1tmxIB7gAYT5vS</recordid><startdate>20210831</startdate><enddate>20210831</enddate><creator>Ruprecht, Joel</creator><creator>Eriksson, Charlotte E.</creator><creator>Forrester, Tavis D.</creator><creator>Spitz, Derek B.</creator><creator>Clark, Darren A.</creator><creator>Wisdom, Michael J.</creator><creator>Bianco, Marcus</creator><creator>Rowland, Mary M.</creator><creator>Smith, Joshua B.</creator><creator>Johnson, Bruce K.</creator><creator>Levi, Taal</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8738-9826</orcidid><orcidid>https://orcid.org/0000-0002-9443-7582</orcidid><orcidid>https://orcid.org/0000-0001-6762-4115</orcidid><orcidid>https://orcid.org/0000-0001-7899-4277</orcidid><orcidid>https://orcid.org/0000-0001-5766-8683</orcidid></search><sort><creationdate>20210831</creationdate><title>Variable strategies to solve risk–reward tradeoffs in carnivore communities</title><author>Ruprecht, Joel ; Eriksson, Charlotte E. ; Forrester, Tavis D. ; Spitz, Derek B. ; Clark, Darren A. ; Wisdom, Michael J. ; Bianco, Marcus ; Rowland, Mary M. ; Smith, Joshua B. ; Johnson, Bruce K. ; Levi, Taal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-82dc831a7db378b35e444f3ce33efb962d3a3b93ff9706e369e6291cc8ac0f953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Attraction</topic><topic>Bears</topic><topic>Biological Sciences</topic><topic>Cameras</topic><topic>Canis latrans</topic><topic>Carnivora - physiology</topic><topic>Carnivores</topic><topic>Consumption</topic><topic>Coyotes</topic><topic>Coyotes - physiology</topic><topic>Diet</topic><topic>Ecosystem</topic><topic>Food Chain</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Interspecific relationships</topic><topic>Lynx - physiology</topic><topic>Lynx rufus</topic><topic>Population Dynamics</topic><topic>Population studies</topic><topic>Predators</topic><topic>Predatory Behavior</topic><topic>Prey</topic><topic>Provisioning</topic><topic>Puma - physiology</topic><topic>Reinforcement</topic><topic>Remote monitoring</topic><topic>Resource allocation</topic><topic>Reward</topic><topic>Risk taking</topic><topic>Scavenging</topic><topic>Telemetry</topic><topic>Ursidae - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruprecht, Joel</creatorcontrib><creatorcontrib>Eriksson, Charlotte E.</creatorcontrib><creatorcontrib>Forrester, Tavis D.</creatorcontrib><creatorcontrib>Spitz, Derek B.</creatorcontrib><creatorcontrib>Clark, Darren A.</creatorcontrib><creatorcontrib>Wisdom, Michael J.</creatorcontrib><creatorcontrib>Bianco, Marcus</creatorcontrib><creatorcontrib>Rowland, Mary M.</creatorcontrib><creatorcontrib>Smith, Joshua B.</creatorcontrib><creatorcontrib>Johnson, Bruce K.</creatorcontrib><creatorcontrib>Levi, Taal</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruprecht, Joel</au><au>Eriksson, Charlotte E.</au><au>Forrester, Tavis D.</au><au>Spitz, Derek B.</au><au>Clark, Darren A.</au><au>Wisdom, Michael J.</au><au>Bianco, Marcus</au><au>Rowland, Mary M.</au><au>Smith, Joshua B.</au><au>Johnson, Bruce K.</au><au>Levi, Taal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variable strategies to solve risk–reward tradeoffs in carnivore communities</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-08-31</date><risdate>2021</risdate><volume>118</volume><issue>35</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Mesopredator release theory suggests that dominant predators suppress subordinate carnivores and ultimately shape community dynamics, but the assumption that subordinate species are only negatively affected ignores the possibility of facilitation through scavenging. We examined the interplay within a carnivore community consisting of cougars, coyotes, black bears, and bobcats using contemporaneous Global Positioning System telemetry data from 51 individuals; diet analysis from 972 DNA-metabarcoded scats; and data from 128 physical investigations of cougar kill sites, 28 of which were monitored with remote cameras. Resource provisioning from competitively dominant cougars to coyotes through scavenging was so prolific as to be an overwhelming determinant of coyote behavior, space use, and resource acquisition. This was evident via the strong attraction of coyotes to cougar kill sites, frequent scavenging of cougar-killed prey, and coyote diets that nearly matched cougars in the magnitude of ungulate consumption. Yet coyotes were often killed by cougars and used space to minimize encounters, complicating the fitness benefits gained from scavenging. We estimated that 23% (95% CI: 8 to 55%) of the coyote population in our study area was killed by cougars annually, suggesting that coyote interactions with cougars are a complex behavioral game of risk and reward. In contrast, we found no indication that bobcat space use or diet was influenced by cougars. Black bears avoided cougars, but there was no evidence of attraction to cougar kill sites and much lower levels of ungulate consumption and carcass visitation than for coyotes. Interspecific interactions among carnivores are multifaceted, encompassing both suppression and facilitation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34429359</pmid><doi>10.1073/pnas.2101614118</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8738-9826</orcidid><orcidid>https://orcid.org/0000-0002-9443-7582</orcidid><orcidid>https://orcid.org/0000-0001-6762-4115</orcidid><orcidid>https://orcid.org/0000-0001-7899-4277</orcidid><orcidid>https://orcid.org/0000-0001-5766-8683</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-08, Vol.118 (35), p.1-9
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8536332
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Attraction
Bears
Biological Sciences
Cameras
Canis latrans
Carnivora - physiology
Carnivores
Consumption
Coyotes
Coyotes - physiology
Diet
Ecosystem
Food Chain
Global positioning systems
GPS
Interspecific relationships
Lynx - physiology
Lynx rufus
Population Dynamics
Population studies
Predators
Predatory Behavior
Prey
Provisioning
Puma - physiology
Reinforcement
Remote monitoring
Resource allocation
Reward
Risk taking
Scavenging
Telemetry
Ursidae - physiology
title Variable strategies to solve risk–reward tradeoffs in carnivore communities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variable%20strategies%20to%20solve%20risk%E2%80%93reward%20tradeoffs%20in%20carnivore%20communities&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ruprecht,%20Joel&rft.date=2021-08-31&rft.volume=118&rft.issue=35&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2101614118&rft_dat=%3Cjstor_pubme%3E27075323%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569412360&rft_id=info:pmid/34429359&rft_jstor_id=27075323&rfr_iscdi=true