Development and Validation of 3 Min Incremental Step-In-Place Test for Predicting Maximal Oxygen Uptake in Home Settings: A Submaximal Exercise Study to Assess Cardiorespiratory Fitness
The purpose of this research was to develop the 3 min incremental step-in-place (3MISP) test for predicting maximal oxygen uptake (V.O2max). A total of 205 adults (20–64 years) completed the 3MISP and V.O2max tests. Using age, gender, body composition (BC) including percent body fat (PBF) or body ma...
Gespeichert in:
Veröffentlicht in: | International journal of environmental research and public health 2021-10, Vol.18 (20), p.10750 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | 10750 |
container_title | International journal of environmental research and public health |
container_volume | 18 |
creator | Li, Fang Chang, Chun-Hao Chung, Yu-Chun Wu, Huey-June Kan, Nai-Wen ChangChien, Wen-Sheng Ho, Chin-Shan Huang, Chi-Chang |
description | The purpose of this research was to develop the 3 min incremental step-in-place (3MISP) test for predicting maximal oxygen uptake (V.O2max). A total of 205 adults (20–64 years) completed the 3MISP and V.O2max tests. Using age, gender, body composition (BC) including percent body fat (PBF) or body mass index (BMI), and with or without heart rate (HR) at the beginning of exercise (HR0) or difference between HR at the third minute during the exercise and the first minute post exercise (ΔHR3 − HR4) in the 3MISP test, six V.O2max prediction models were derived from multiple linear regression. Age (r = −0.239), gender (r = 0.430), BMI (r = −0.191), PBF (r = −0.706), HR0 (r = −0.516), and ΔHR3 − HR4 (r = 0.563) were significantly correlated to V.O2max. Among the six V.O2max prediction models, the PBF model∆HR3 − HR4 has the highest accuracy. The simplest models with age, gender, and PBF/BMI explained 54.5% of the V.O2max in the PBF modelBC and 39.8% of that in the BMI modelBC. The addition of HR0 and ∆HR3 − HR4 increases the variance of V.O2max explained by the PBF and BMI models∆HR3 − HR4 by 17.98% and 45.23%, respectively, while standard errors of estimate decrease by 10.73% and 15.61%. These data demonstrate that the models established using 3MISP-HR data can enhance the accuracy of V.O2max prediction. |
doi_str_mv | 10.3390/ijerph182010750 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8535254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584384857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-8f5a10d197599c00783017b95494964bbe77993f9bd0faa2632fcca91272313f3</originalsourceid><addsrcrecordid>eNpdkk9v1DAQxSMEoqVw5joSFy6hdhwnNgek1dLSlVq10rZcI8eZbL1k7WA71e5H67erl64Q9DQjvZ-e3vzJso-UfGFMklOzRj_eU1EQSmpOXmXHtKpIXlaEvv6nP8rehbAmhImykm-zI1ZWoihleZw9fscHHNy4QRtB2Q5-qsF0KhpnwfXA4MpYWFjtcU-oAZYRx3xh85tBaYRbDBF65-HGY2d0NHYFV2prNom83u5WaOFujOoXQrK5cBuEJcY9Fb7CDJZTuznAZ1v02oSkx6nbQXQwCwFDgLnynXEew2i8is7v4NxEm5T32ZteDQE_HOpJdnd-dju_yC-vfyzms8tcMyliLnquKOmorLmUmpBaMELrVvI0vqzKtsW6lpL1su1Ir1RRsaLXWkla1AWjrGcn2bdn3zGlxU6nNXg1NKNPuf2ucco0_yvW3Dcr99AIznjBy2Tw-WDg3e8pLazZmKBxGJRFN4Wm4KKsBee0SOinF-jaTd6m8f5Q6XyC14k6faa0dyF47P-GoaTZv0Xz4i3YEzARrU0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584384857</pqid></control><display><type>article</type><title>Development and Validation of 3 Min Incremental Step-In-Place Test for Predicting Maximal Oxygen Uptake in Home Settings: A Submaximal Exercise Study to Assess Cardiorespiratory Fitness</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Li, Fang ; Chang, Chun-Hao ; Chung, Yu-Chun ; Wu, Huey-June ; Kan, Nai-Wen ; ChangChien, Wen-Sheng ; Ho, Chin-Shan ; Huang, Chi-Chang</creator><creatorcontrib>Li, Fang ; Chang, Chun-Hao ; Chung, Yu-Chun ; Wu, Huey-June ; Kan, Nai-Wen ; ChangChien, Wen-Sheng ; Ho, Chin-Shan ; Huang, Chi-Chang</creatorcontrib><description>The purpose of this research was to develop the 3 min incremental step-in-place (3MISP) test for predicting maximal oxygen uptake (V.O2max). A total of 205 adults (20–64 years) completed the 3MISP and V.O2max tests. Using age, gender, body composition (BC) including percent body fat (PBF) or body mass index (BMI), and with or without heart rate (HR) at the beginning of exercise (HR0) or difference between HR at the third minute during the exercise and the first minute post exercise (ΔHR3 − HR4) in the 3MISP test, six V.O2max prediction models were derived from multiple linear regression. Age (r = −0.239), gender (r = 0.430), BMI (r = −0.191), PBF (r = −0.706), HR0 (r = −0.516), and ΔHR3 − HR4 (r = 0.563) were significantly correlated to V.O2max. Among the six V.O2max prediction models, the PBF model∆HR3 − HR4 has the highest accuracy. The simplest models with age, gender, and PBF/BMI explained 54.5% of the V.O2max in the PBF modelBC and 39.8% of that in the BMI modelBC. The addition of HR0 and ∆HR3 − HR4 increases the variance of V.O2max explained by the PBF and BMI models∆HR3 − HR4 by 17.98% and 45.23%, respectively, while standard errors of estimate decrease by 10.73% and 15.61%. These data demonstrate that the models established using 3MISP-HR data can enhance the accuracy of V.O2max prediction.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph182010750</identifier><identifier>PMID: 34682494</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Age ; Body composition ; Body fat ; Body mass ; Body mass index ; Body size ; Cardiorespiratory fitness ; Coronaviruses ; COVID-19 ; Exercise ; Gender ; Heart rate ; Medical research ; Model accuracy ; Oxygen consumption ; Oxygen uptake ; Pandemics ; Physical fitness ; Physiology ; Prediction models ; Regression analysis</subject><ispartof>International journal of environmental research and public health, 2021-10, Vol.18 (20), p.10750</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-8f5a10d197599c00783017b95494964bbe77993f9bd0faa2632fcca91272313f3</citedby><cites>FETCH-LOGICAL-c398t-8f5a10d197599c00783017b95494964bbe77993f9bd0faa2632fcca91272313f3</cites><orcidid>0000-0003-1446-6787 ; 0000-0003-2441-6222 ; 0000-0002-2786-5878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8535254/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8535254/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Chang, Chun-Hao</creatorcontrib><creatorcontrib>Chung, Yu-Chun</creatorcontrib><creatorcontrib>Wu, Huey-June</creatorcontrib><creatorcontrib>Kan, Nai-Wen</creatorcontrib><creatorcontrib>ChangChien, Wen-Sheng</creatorcontrib><creatorcontrib>Ho, Chin-Shan</creatorcontrib><creatorcontrib>Huang, Chi-Chang</creatorcontrib><title>Development and Validation of 3 Min Incremental Step-In-Place Test for Predicting Maximal Oxygen Uptake in Home Settings: A Submaximal Exercise Study to Assess Cardiorespiratory Fitness</title><title>International journal of environmental research and public health</title><description>The purpose of this research was to develop the 3 min incremental step-in-place (3MISP) test for predicting maximal oxygen uptake (V.O2max). A total of 205 adults (20–64 years) completed the 3MISP and V.O2max tests. Using age, gender, body composition (BC) including percent body fat (PBF) or body mass index (BMI), and with or without heart rate (HR) at the beginning of exercise (HR0) or difference between HR at the third minute during the exercise and the first minute post exercise (ΔHR3 − HR4) in the 3MISP test, six V.O2max prediction models were derived from multiple linear regression. Age (r = −0.239), gender (r = 0.430), BMI (r = −0.191), PBF (r = −0.706), HR0 (r = −0.516), and ΔHR3 − HR4 (r = 0.563) were significantly correlated to V.O2max. Among the six V.O2max prediction models, the PBF model∆HR3 − HR4 has the highest accuracy. The simplest models with age, gender, and PBF/BMI explained 54.5% of the V.O2max in the PBF modelBC and 39.8% of that in the BMI modelBC. The addition of HR0 and ∆HR3 − HR4 increases the variance of V.O2max explained by the PBF and BMI models∆HR3 − HR4 by 17.98% and 45.23%, respectively, while standard errors of estimate decrease by 10.73% and 15.61%. These data demonstrate that the models established using 3MISP-HR data can enhance the accuracy of V.O2max prediction.</description><subject>Age</subject><subject>Body composition</subject><subject>Body fat</subject><subject>Body mass</subject><subject>Body mass index</subject><subject>Body size</subject><subject>Cardiorespiratory fitness</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Exercise</subject><subject>Gender</subject><subject>Heart rate</subject><subject>Medical research</subject><subject>Model accuracy</subject><subject>Oxygen consumption</subject><subject>Oxygen uptake</subject><subject>Pandemics</subject><subject>Physical fitness</subject><subject>Physiology</subject><subject>Prediction models</subject><subject>Regression analysis</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkk9v1DAQxSMEoqVw5joSFy6hdhwnNgek1dLSlVq10rZcI8eZbL1k7WA71e5H67erl64Q9DQjvZ-e3vzJso-UfGFMklOzRj_eU1EQSmpOXmXHtKpIXlaEvv6nP8rehbAmhImykm-zI1ZWoihleZw9fscHHNy4QRtB2Q5-qsF0KhpnwfXA4MpYWFjtcU-oAZYRx3xh85tBaYRbDBF65-HGY2d0NHYFV2prNom83u5WaOFujOoXQrK5cBuEJcY9Fb7CDJZTuznAZ1v02oSkx6nbQXQwCwFDgLnynXEew2i8is7v4NxEm5T32ZteDQE_HOpJdnd-dju_yC-vfyzms8tcMyliLnquKOmorLmUmpBaMELrVvI0vqzKtsW6lpL1su1Ir1RRsaLXWkla1AWjrGcn2bdn3zGlxU6nNXg1NKNPuf2ucco0_yvW3Dcr99AIznjBy2Tw-WDg3e8pLazZmKBxGJRFN4Wm4KKsBee0SOinF-jaTd6m8f5Q6XyC14k6faa0dyF47P-GoaTZv0Xz4i3YEzARrU0</recordid><startdate>20211013</startdate><enddate>20211013</enddate><creator>Li, Fang</creator><creator>Chang, Chun-Hao</creator><creator>Chung, Yu-Chun</creator><creator>Wu, Huey-June</creator><creator>Kan, Nai-Wen</creator><creator>ChangChien, Wen-Sheng</creator><creator>Ho, Chin-Shan</creator><creator>Huang, Chi-Chang</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1446-6787</orcidid><orcidid>https://orcid.org/0000-0003-2441-6222</orcidid><orcidid>https://orcid.org/0000-0002-2786-5878</orcidid></search><sort><creationdate>20211013</creationdate><title>Development and Validation of 3 Min Incremental Step-In-Place Test for Predicting Maximal Oxygen Uptake in Home Settings: A Submaximal Exercise Study to Assess Cardiorespiratory Fitness</title><author>Li, Fang ; Chang, Chun-Hao ; Chung, Yu-Chun ; Wu, Huey-June ; Kan, Nai-Wen ; ChangChien, Wen-Sheng ; Ho, Chin-Shan ; Huang, Chi-Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-8f5a10d197599c00783017b95494964bbe77993f9bd0faa2632fcca91272313f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Age</topic><topic>Body composition</topic><topic>Body fat</topic><topic>Body mass</topic><topic>Body mass index</topic><topic>Body size</topic><topic>Cardiorespiratory fitness</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Exercise</topic><topic>Gender</topic><topic>Heart rate</topic><topic>Medical research</topic><topic>Model accuracy</topic><topic>Oxygen consumption</topic><topic>Oxygen uptake</topic><topic>Pandemics</topic><topic>Physical fitness</topic><topic>Physiology</topic><topic>Prediction models</topic><topic>Regression analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Chang, Chun-Hao</creatorcontrib><creatorcontrib>Chung, Yu-Chun</creatorcontrib><creatorcontrib>Wu, Huey-June</creatorcontrib><creatorcontrib>Kan, Nai-Wen</creatorcontrib><creatorcontrib>ChangChien, Wen-Sheng</creatorcontrib><creatorcontrib>Ho, Chin-Shan</creatorcontrib><creatorcontrib>Huang, Chi-Chang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Fang</au><au>Chang, Chun-Hao</au><au>Chung, Yu-Chun</au><au>Wu, Huey-June</au><au>Kan, Nai-Wen</au><au>ChangChien, Wen-Sheng</au><au>Ho, Chin-Shan</au><au>Huang, Chi-Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Validation of 3 Min Incremental Step-In-Place Test for Predicting Maximal Oxygen Uptake in Home Settings: A Submaximal Exercise Study to Assess Cardiorespiratory Fitness</atitle><jtitle>International journal of environmental research and public health</jtitle><date>2021-10-13</date><risdate>2021</risdate><volume>18</volume><issue>20</issue><spage>10750</spage><pages>10750-</pages><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>The purpose of this research was to develop the 3 min incremental step-in-place (3MISP) test for predicting maximal oxygen uptake (V.O2max). A total of 205 adults (20–64 years) completed the 3MISP and V.O2max tests. Using age, gender, body composition (BC) including percent body fat (PBF) or body mass index (BMI), and with or without heart rate (HR) at the beginning of exercise (HR0) or difference between HR at the third minute during the exercise and the first minute post exercise (ΔHR3 − HR4) in the 3MISP test, six V.O2max prediction models were derived from multiple linear regression. Age (r = −0.239), gender (r = 0.430), BMI (r = −0.191), PBF (r = −0.706), HR0 (r = −0.516), and ΔHR3 − HR4 (r = 0.563) were significantly correlated to V.O2max. Among the six V.O2max prediction models, the PBF model∆HR3 − HR4 has the highest accuracy. The simplest models with age, gender, and PBF/BMI explained 54.5% of the V.O2max in the PBF modelBC and 39.8% of that in the BMI modelBC. The addition of HR0 and ∆HR3 − HR4 increases the variance of V.O2max explained by the PBF and BMI models∆HR3 − HR4 by 17.98% and 45.23%, respectively, while standard errors of estimate decrease by 10.73% and 15.61%. These data demonstrate that the models established using 3MISP-HR data can enhance the accuracy of V.O2max prediction.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34682494</pmid><doi>10.3390/ijerph182010750</doi><orcidid>https://orcid.org/0000-0003-1446-6787</orcidid><orcidid>https://orcid.org/0000-0003-2441-6222</orcidid><orcidid>https://orcid.org/0000-0002-2786-5878</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-4601 |
ispartof | International journal of environmental research and public health, 2021-10, Vol.18 (20), p.10750 |
issn | 1660-4601 1661-7827 1660-4601 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8535254 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Age Body composition Body fat Body mass Body mass index Body size Cardiorespiratory fitness Coronaviruses COVID-19 Exercise Gender Heart rate Medical research Model accuracy Oxygen consumption Oxygen uptake Pandemics Physical fitness Physiology Prediction models Regression analysis |
title | Development and Validation of 3 Min Incremental Step-In-Place Test for Predicting Maximal Oxygen Uptake in Home Settings: A Submaximal Exercise Study to Assess Cardiorespiratory Fitness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A32%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Validation%20of%203%20Min%20Incremental%20Step-In-Place%20Test%20for%20Predicting%20Maximal%20Oxygen%20Uptake%20in%20Home%20Settings:%20A%20Submaximal%20Exercise%20Study%20to%20Assess%20Cardiorespiratory%20Fitness&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Li,%20Fang&rft.date=2021-10-13&rft.volume=18&rft.issue=20&rft.spage=10750&rft.pages=10750-&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph182010750&rft_dat=%3Cproquest_pubme%3E2584384857%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584384857&rft_id=info:pmid/34682494&rfr_iscdi=true |