Including urinary output to define AKI enhances the performance of machine learning models to predict AKI at admission

Acute kidney injury (AKI) is a prevalent and detrimental condition in intensive care unit patients. Most AKI predictive models only predict creatinine-triggered AKI (AKICr) and might underperform when predicting urine-output-triggered AKI (AKIUO). We aimed to describe how admission AKICr prediction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of critical care 2021-04, Vol.62, p.283-288
Hauptverfasser: Schwager, Emma, Lanius, Stephanie, Ghosh, Erina, Eshelman, Larry, Pasupathy, Kalyan S., Barreto, Erin F., Kashani, Kianoush
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 288
container_issue
container_start_page 283
container_title Journal of critical care
container_volume 62
creator Schwager, Emma
Lanius, Stephanie
Ghosh, Erina
Eshelman, Larry
Pasupathy, Kalyan S.
Barreto, Erin F.
Kashani, Kianoush
description Acute kidney injury (AKI) is a prevalent and detrimental condition in intensive care unit patients. Most AKI predictive models only predict creatinine-triggered AKI (AKICr) and might underperform when predicting urine-output-triggered AKI (AKIUO). We aimed to describe how admission AKICr prediction models perform in all AKI patients. Three types of models were trained: 1) pAKIany, predicting AKI based on creatinine or urine output, 2) pAKIUO, predicting AKI based only on urine output, and 3) pAKICr, predicting AKI based only on creatinine. We compared model performance and predictive features. The pAKIany models had the best overall performance (AUROC 0.673–0.716) and the most consistent performance across three patient cohorts grouped by type of AKI trigger (min AUROC of 0.636). The pAKICr models had fair performance in predicting AKICr (AUROCs 0.702–0.748) but poor performance predicting AKIUO (AUROCs 0.581–0.695). The predictive features for the pAKICr models and pAKIUO models were distinct, while top features for the pAKIany models were consistently a combination of those for the pAKICr and pAKIUO models. Ignoring urine output in the outcome during model training resulted in models that are unlikely to predict AKIUO adequately and may miss a substantial proportion of patients in practice. •We aimed to describe differences in AKI prediction models based on urine output vs. creatinine-triggered AKI.•Serum creatinine models could not predict AKI based on urine output and used differing predictive features.•Ignoring urine output in AKI prediction resulted in inadequate performance and missed a substantial proportion of patients.
doi_str_mv 10.1016/j.jcrc.2021.01.003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8534813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0883944121000034</els_id><sourcerecordid>2483812843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-dd97cc7c712423ff9752bc475eaeb55f8fac5ab07365ad74f90234413984ca423</originalsourceid><addsrcrecordid>eNp9kV-LFSEchoco2tPWF-gihG66mZOOenQggmXpz6GFbupaPPpzj8OMTuoc6Nuv09mW6iIQBX188PVtmpcEbwkmu7fDdjDJbDvckS2uA9NHzYZwLlq5I_xxs8FS0rZnjFw0z3IeMCaCUv60uagzlmJHN81pH8y4WB9u0ZJ80OknikuZl4JKRBacD4CuvuwRhKMOBjIqR0AzJBfTtG6g6NCkzXHlRtAprKYpWhjzapgTWG_KL4UuSNvJ5-xjeN48cXrM8OJ-vWy-f_zw7fpze_P10_766qY1TNLSWtsLY4QRpGMdda4XvDsYJjhoOHDupNOG6wMWdMe1Fcz1uKM1L-0lM7peuWzen73zcpjAGggl6VHNyU81qoraq79Pgj-q23hSklMmCa2CN_eCFH8skIuqCQyMow4Ql6y6-k5JOslW9PU_6BCXFGq8SvUC0571faW6M2VSzDmBe3gMwWqtVQ1qrVWttSpcB17Vr_6M8XDld48VeHcG6r_DyUNS2Xio_VifwBRlo_-f_w5UqrU9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497039499</pqid></control><display><type>article</type><title>Including urinary output to define AKI enhances the performance of machine learning models to predict AKI at admission</title><source>Elsevier ScienceDirect Journals</source><creator>Schwager, Emma ; Lanius, Stephanie ; Ghosh, Erina ; Eshelman, Larry ; Pasupathy, Kalyan S. ; Barreto, Erin F. ; Kashani, Kianoush</creator><creatorcontrib>Schwager, Emma ; Lanius, Stephanie ; Ghosh, Erina ; Eshelman, Larry ; Pasupathy, Kalyan S. ; Barreto, Erin F. ; Kashani, Kianoush</creatorcontrib><description>Acute kidney injury (AKI) is a prevalent and detrimental condition in intensive care unit patients. Most AKI predictive models only predict creatinine-triggered AKI (AKICr) and might underperform when predicting urine-output-triggered AKI (AKIUO). We aimed to describe how admission AKICr prediction models perform in all AKI patients. Three types of models were trained: 1) pAKIany, predicting AKI based on creatinine or urine output, 2) pAKIUO, predicting AKI based only on urine output, and 3) pAKICr, predicting AKI based only on creatinine. We compared model performance and predictive features. The pAKIany models had the best overall performance (AUROC 0.673–0.716) and the most consistent performance across three patient cohorts grouped by type of AKI trigger (min AUROC of 0.636). The pAKICr models had fair performance in predicting AKICr (AUROCs 0.702–0.748) but poor performance predicting AKIUO (AUROCs 0.581–0.695). The predictive features for the pAKICr models and pAKIUO models were distinct, while top features for the pAKIany models were consistently a combination of those for the pAKICr and pAKIUO models. Ignoring urine output in the outcome during model training resulted in models that are unlikely to predict AKIUO adequately and may miss a substantial proportion of patients in practice. •We aimed to describe differences in AKI prediction models based on urine output vs. creatinine-triggered AKI.•Serum creatinine models could not predict AKI based on urine output and used differing predictive features.•Ignoring urine output in AKI prediction resulted in inadequate performance and missed a substantial proportion of patients.</description><identifier>ISSN: 0883-9441</identifier><identifier>EISSN: 1557-8615</identifier><identifier>DOI: 10.1016/j.jcrc.2021.01.003</identifier><identifier>PMID: 33508763</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acute kidney injury ; Clinical decision support system ; Comorbidity ; Creatinine ; Critical care ; Machine learning ; Mortality ; Neural networks ; Patients ; Urine</subject><ispartof>Journal of critical care, 2021-04, Vol.62, p.283-288</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><rights>2021. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-dd97cc7c712423ff9752bc475eaeb55f8fac5ab07365ad74f90234413984ca423</citedby><cites>FETCH-LOGICAL-c483t-dd97cc7c712423ff9752bc475eaeb55f8fac5ab07365ad74f90234413984ca423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0883944121000034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33508763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schwager, Emma</creatorcontrib><creatorcontrib>Lanius, Stephanie</creatorcontrib><creatorcontrib>Ghosh, Erina</creatorcontrib><creatorcontrib>Eshelman, Larry</creatorcontrib><creatorcontrib>Pasupathy, Kalyan S.</creatorcontrib><creatorcontrib>Barreto, Erin F.</creatorcontrib><creatorcontrib>Kashani, Kianoush</creatorcontrib><title>Including urinary output to define AKI enhances the performance of machine learning models to predict AKI at admission</title><title>Journal of critical care</title><addtitle>J Crit Care</addtitle><description>Acute kidney injury (AKI) is a prevalent and detrimental condition in intensive care unit patients. Most AKI predictive models only predict creatinine-triggered AKI (AKICr) and might underperform when predicting urine-output-triggered AKI (AKIUO). We aimed to describe how admission AKICr prediction models perform in all AKI patients. Three types of models were trained: 1) pAKIany, predicting AKI based on creatinine or urine output, 2) pAKIUO, predicting AKI based only on urine output, and 3) pAKICr, predicting AKI based only on creatinine. We compared model performance and predictive features. The pAKIany models had the best overall performance (AUROC 0.673–0.716) and the most consistent performance across three patient cohorts grouped by type of AKI trigger (min AUROC of 0.636). The pAKICr models had fair performance in predicting AKICr (AUROCs 0.702–0.748) but poor performance predicting AKIUO (AUROCs 0.581–0.695). The predictive features for the pAKICr models and pAKIUO models were distinct, while top features for the pAKIany models were consistently a combination of those for the pAKICr and pAKIUO models. Ignoring urine output in the outcome during model training resulted in models that are unlikely to predict AKIUO adequately and may miss a substantial proportion of patients in practice. •We aimed to describe differences in AKI prediction models based on urine output vs. creatinine-triggered AKI.•Serum creatinine models could not predict AKI based on urine output and used differing predictive features.•Ignoring urine output in AKI prediction resulted in inadequate performance and missed a substantial proportion of patients.</description><subject>Acute kidney injury</subject><subject>Clinical decision support system</subject><subject>Comorbidity</subject><subject>Creatinine</subject><subject>Critical care</subject><subject>Machine learning</subject><subject>Mortality</subject><subject>Neural networks</subject><subject>Patients</subject><subject>Urine</subject><issn>0883-9441</issn><issn>1557-8615</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kV-LFSEchoco2tPWF-gihG66mZOOenQggmXpz6GFbupaPPpzj8OMTuoc6Nuv09mW6iIQBX188PVtmpcEbwkmu7fDdjDJbDvckS2uA9NHzYZwLlq5I_xxs8FS0rZnjFw0z3IeMCaCUv60uagzlmJHN81pH8y4WB9u0ZJ80OknikuZl4JKRBacD4CuvuwRhKMOBjIqR0AzJBfTtG6g6NCkzXHlRtAprKYpWhjzapgTWG_KL4UuSNvJ5-xjeN48cXrM8OJ-vWy-f_zw7fpze_P10_766qY1TNLSWtsLY4QRpGMdda4XvDsYJjhoOHDupNOG6wMWdMe1Fcz1uKM1L-0lM7peuWzen73zcpjAGggl6VHNyU81qoraq79Pgj-q23hSklMmCa2CN_eCFH8skIuqCQyMow4Ql6y6-k5JOslW9PU_6BCXFGq8SvUC0571faW6M2VSzDmBe3gMwWqtVQ1qrVWttSpcB17Vr_6M8XDld48VeHcG6r_DyUNS2Xio_VifwBRlo_-f_w5UqrU9</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Schwager, Emma</creator><creator>Lanius, Stephanie</creator><creator>Ghosh, Erina</creator><creator>Eshelman, Larry</creator><creator>Pasupathy, Kalyan S.</creator><creator>Barreto, Erin F.</creator><creator>Kashani, Kianoush</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>ASE</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FPQ</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K6X</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210401</creationdate><title>Including urinary output to define AKI enhances the performance of machine learning models to predict AKI at admission</title><author>Schwager, Emma ; Lanius, Stephanie ; Ghosh, Erina ; Eshelman, Larry ; Pasupathy, Kalyan S. ; Barreto, Erin F. ; Kashani, Kianoush</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-dd97cc7c712423ff9752bc475eaeb55f8fac5ab07365ad74f90234413984ca423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acute kidney injury</topic><topic>Clinical decision support system</topic><topic>Comorbidity</topic><topic>Creatinine</topic><topic>Critical care</topic><topic>Machine learning</topic><topic>Mortality</topic><topic>Neural networks</topic><topic>Patients</topic><topic>Urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwager, Emma</creatorcontrib><creatorcontrib>Lanius, Stephanie</creatorcontrib><creatorcontrib>Ghosh, Erina</creatorcontrib><creatorcontrib>Eshelman, Larry</creatorcontrib><creatorcontrib>Pasupathy, Kalyan S.</creatorcontrib><creatorcontrib>Barreto, Erin F.</creatorcontrib><creatorcontrib>Kashani, Kianoush</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>British Nursing Index</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>British Nursing Index (BNI) (1985 to Present)</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>British Nursing Index</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of critical care</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwager, Emma</au><au>Lanius, Stephanie</au><au>Ghosh, Erina</au><au>Eshelman, Larry</au><au>Pasupathy, Kalyan S.</au><au>Barreto, Erin F.</au><au>Kashani, Kianoush</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Including urinary output to define AKI enhances the performance of machine learning models to predict AKI at admission</atitle><jtitle>Journal of critical care</jtitle><addtitle>J Crit Care</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>62</volume><spage>283</spage><epage>288</epage><pages>283-288</pages><issn>0883-9441</issn><eissn>1557-8615</eissn><abstract>Acute kidney injury (AKI) is a prevalent and detrimental condition in intensive care unit patients. Most AKI predictive models only predict creatinine-triggered AKI (AKICr) and might underperform when predicting urine-output-triggered AKI (AKIUO). We aimed to describe how admission AKICr prediction models perform in all AKI patients. Three types of models were trained: 1) pAKIany, predicting AKI based on creatinine or urine output, 2) pAKIUO, predicting AKI based only on urine output, and 3) pAKICr, predicting AKI based only on creatinine. We compared model performance and predictive features. The pAKIany models had the best overall performance (AUROC 0.673–0.716) and the most consistent performance across three patient cohorts grouped by type of AKI trigger (min AUROC of 0.636). The pAKICr models had fair performance in predicting AKICr (AUROCs 0.702–0.748) but poor performance predicting AKIUO (AUROCs 0.581–0.695). The predictive features for the pAKICr models and pAKIUO models were distinct, while top features for the pAKIany models were consistently a combination of those for the pAKICr and pAKIUO models. Ignoring urine output in the outcome during model training resulted in models that are unlikely to predict AKIUO adequately and may miss a substantial proportion of patients in practice. •We aimed to describe differences in AKI prediction models based on urine output vs. creatinine-triggered AKI.•Serum creatinine models could not predict AKI based on urine output and used differing predictive features.•Ignoring urine output in AKI prediction resulted in inadequate performance and missed a substantial proportion of patients.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33508763</pmid><doi>10.1016/j.jcrc.2021.01.003</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-9441
ispartof Journal of critical care, 2021-04, Vol.62, p.283-288
issn 0883-9441
1557-8615
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8534813
source Elsevier ScienceDirect Journals
subjects Acute kidney injury
Clinical decision support system
Comorbidity
Creatinine
Critical care
Machine learning
Mortality
Neural networks
Patients
Urine
title Including urinary output to define AKI enhances the performance of machine learning models to predict AKI at admission
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Including%20urinary%20output%20to%20define%20AKI%20enhances%20the%20performance%20of%20machine%20learning%20models%20to%20predict%20AKI%20at%20admission&rft.jtitle=Journal%20of%20critical%20care&rft.au=Schwager,%20Emma&rft.date=2021-04-01&rft.volume=62&rft.spage=283&rft.epage=288&rft.pages=283-288&rft.issn=0883-9441&rft.eissn=1557-8615&rft_id=info:doi/10.1016/j.jcrc.2021.01.003&rft_dat=%3Cproquest_pubme%3E2483812843%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2497039499&rft_id=info:pmid/33508763&rft_els_id=S0883944121000034&rfr_iscdi=true