Population differentiation of Rhodobacteraceae along with coral compartments
Coral mucus, tissue, and skeleton harbor compositionally different microbiota, but how these coral compartments shape the microbial evolution remains unexplored. Here, we sampled bacteria inhabiting a prevalent coral species Platygyra acuta and sequenced genomes of 234 isolates comprising two popula...
Gespeichert in:
Veröffentlicht in: | The ISME Journal 2021-11, Vol.15 (11), p.3286-3302 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3302 |
---|---|
container_issue | 11 |
container_start_page | 3286 |
container_title | The ISME Journal |
container_volume | 15 |
creator | Luo, Danli Wang, Xiaojun Feng, Xiaoyuan Tian, Mengdan Wang, Sishuo Tang, Sen-Lin Ang, Put Yan, Aixin Luo, Haiwei |
description | Coral mucus, tissue, and skeleton harbor compositionally different microbiota, but how these coral compartments shape the microbial evolution remains unexplored. Here, we sampled bacteria inhabiting a prevalent coral species
Platygyra acuta
and sequenced genomes of 234 isolates comprising two populations in Rhodobacteraceae, an alphaproteobacterial lineage representing a significant but variable proportion (5–50%) of the coral microbiota. The
Ruegeria
population (20 genomes) contains three clades represented by eight, six, and six isolates predominantly sampled from the skeleton (outgroup), mucus (clade-M), and skeleton (clade-S), respectively. The clade-M possesses functions involved in the utilization of coral osmolytes abundant in the mucus (e.g., methylamines, DMSP, taurine, and L-proline), whereas the clade-S uniquely harbors traits that may promote adaptation to the low-energy and diurnally anoxic skeleton (e.g., sulfur oxidation and swimming motility). These between-clade genetic differences were largely supported by physiological assays. Expanded analyses by including genomes of 24 related isolates (including seven new genomes) from other marine environments suggest that clade-M and clade-S may have diversified in non-coral habitats, but they also consolidated a key role of distinct coral compartments in diversifying many of the above-mentioned traits. The unassigned Rhodobacteraceae population (214 genomes) varies only at a few dozen nucleotide sites across the whole genomes, but the number of between-compartment migration events predicted by the Slatkin–Maddison test supported that dispersal limitation between coral compartments is another key mechanism diversifying microbial populations. Collectively, our results suggest that different coral compartments represent ecologically distinct and microgeographically separate habitats that drive the evolution of the coral microbiota. |
doi_str_mv | 10.1038/s41396-021-01009-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8528864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2531228490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-87796e3856bf9fcee1a3c43c9338d8676066ea594b1c677c3da618b801244c2a3</originalsourceid><addsrcrecordid>eNp9UclOwzAUtBCIluUHOKBIXLgEvMV2LkioYpMqgRCcLcdxWldJXOwExN_jklKWAxfbT29m3jwPAEcIniFIxHmgiOQshRilEEGYp2wLjBHPUMoJh9ubN8MjsBfCAsKMM8Z3wYhQiDjM2BhMH9yyr1VnXZuUtqqMN21nh9pVyePcla5QujNeaaNMomrXzpI3280T7byq49ksle-aSAsHYKdSdTCH63sfPF9fPU1u0-n9zd3kcppqymmXCs5zZojIWFHllTYGKaIp0TkhohSMM8iYUVlOC6QZ55qUiiFRCIgwpRorsg8uBt1lXzSm1HF2tCKX3jbKv0unrPzdae1cztyrFBkWgtEocLoW8O6lN6GTjQ3a1LVqjeuDxBlBGAuawwg9-QNduN63cb2IEvGfo-GVIB5Q2rsQvKk2ZhCUq7DkEJaMYcnPsCSLpOOfa2woX-lEABkAIbbamfHfs_-R_QB3Y6CF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583708674</pqid></control><display><type>article</type><title>Population differentiation of Rhodobacteraceae along with coral compartments</title><source>OUP_牛津大学出版社OA刊</source><source>MEDLINE</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Luo, Danli ; Wang, Xiaojun ; Feng, Xiaoyuan ; Tian, Mengdan ; Wang, Sishuo ; Tang, Sen-Lin ; Ang, Put ; Yan, Aixin ; Luo, Haiwei</creator><creatorcontrib>Luo, Danli ; Wang, Xiaojun ; Feng, Xiaoyuan ; Tian, Mengdan ; Wang, Sishuo ; Tang, Sen-Lin ; Ang, Put ; Yan, Aixin ; Luo, Haiwei</creatorcontrib><description>Coral mucus, tissue, and skeleton harbor compositionally different microbiota, but how these coral compartments shape the microbial evolution remains unexplored. Here, we sampled bacteria inhabiting a prevalent coral species
Platygyra acuta
and sequenced genomes of 234 isolates comprising two populations in Rhodobacteraceae, an alphaproteobacterial lineage representing a significant but variable proportion (5–50%) of the coral microbiota. The
Ruegeria
population (20 genomes) contains three clades represented by eight, six, and six isolates predominantly sampled from the skeleton (outgroup), mucus (clade-M), and skeleton (clade-S), respectively. The clade-M possesses functions involved in the utilization of coral osmolytes abundant in the mucus (e.g., methylamines, DMSP, taurine, and L-proline), whereas the clade-S uniquely harbors traits that may promote adaptation to the low-energy and diurnally anoxic skeleton (e.g., sulfur oxidation and swimming motility). These between-clade genetic differences were largely supported by physiological assays. Expanded analyses by including genomes of 24 related isolates (including seven new genomes) from other marine environments suggest that clade-M and clade-S may have diversified in non-coral habitats, but they also consolidated a key role of distinct coral compartments in diversifying many of the above-mentioned traits. The unassigned Rhodobacteraceae population (214 genomes) varies only at a few dozen nucleotide sites across the whole genomes, but the number of between-compartment migration events predicted by the Slatkin–Maddison test supported that dispersal limitation between coral compartments is another key mechanism diversifying microbial populations. Collectively, our results suggest that different coral compartments represent ecologically distinct and microgeographically separate habitats that drive the evolution of the coral microbiota.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/s41396-021-01009-6</identifier><identifier>PMID: 34017056</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/22 ; 45/23 ; 631/158/855 ; 631/326/41/2530 ; Animals ; Anthozoa ; Biomedical and Life Sciences ; Compartments ; Dispersal ; Ecological effects ; Ecology ; Evolution ; Evolutionary Biology ; Genomes ; Harbors ; Life Sciences ; Marine environment ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Microbiota ; Microorganisms ; Mucus ; Nucleotides ; Oxidation ; Population differentiation ; Populations ; Proline ; Rhodobacteraceae ; Sulfur ; Sulfur oxidation ; Swimming ; Taurine</subject><ispartof>The ISME Journal, 2021-11, Vol.15 (11), p.3286-3302</ispartof><rights>The Author(s), under exclusive licence to International Society for Microbial Ecology 2021</rights><rights>2021. The Author(s), under exclusive licence to International Society for Microbial Ecology.</rights><rights>The Author(s), under exclusive licence to International Society for Microbial Ecology 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-87796e3856bf9fcee1a3c43c9338d8676066ea594b1c677c3da618b801244c2a3</citedby><cites>FETCH-LOGICAL-c474t-87796e3856bf9fcee1a3c43c9338d8676066ea594b1c677c3da618b801244c2a3</cites><orcidid>0000-0003-2317-7821 ; 0000-0002-7220-7305 ; 0000-0002-0094-842X ; 0000-0001-8452-6066 ; 0000-0002-5852-972X ; 0000-0003-0310-5492</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528864/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528864/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34017056$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Danli</creatorcontrib><creatorcontrib>Wang, Xiaojun</creatorcontrib><creatorcontrib>Feng, Xiaoyuan</creatorcontrib><creatorcontrib>Tian, Mengdan</creatorcontrib><creatorcontrib>Wang, Sishuo</creatorcontrib><creatorcontrib>Tang, Sen-Lin</creatorcontrib><creatorcontrib>Ang, Put</creatorcontrib><creatorcontrib>Yan, Aixin</creatorcontrib><creatorcontrib>Luo, Haiwei</creatorcontrib><title>Population differentiation of Rhodobacteraceae along with coral compartments</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Coral mucus, tissue, and skeleton harbor compositionally different microbiota, but how these coral compartments shape the microbial evolution remains unexplored. Here, we sampled bacteria inhabiting a prevalent coral species
Platygyra acuta
and sequenced genomes of 234 isolates comprising two populations in Rhodobacteraceae, an alphaproteobacterial lineage representing a significant but variable proportion (5–50%) of the coral microbiota. The
Ruegeria
population (20 genomes) contains three clades represented by eight, six, and six isolates predominantly sampled from the skeleton (outgroup), mucus (clade-M), and skeleton (clade-S), respectively. The clade-M possesses functions involved in the utilization of coral osmolytes abundant in the mucus (e.g., methylamines, DMSP, taurine, and L-proline), whereas the clade-S uniquely harbors traits that may promote adaptation to the low-energy and diurnally anoxic skeleton (e.g., sulfur oxidation and swimming motility). These between-clade genetic differences were largely supported by physiological assays. Expanded analyses by including genomes of 24 related isolates (including seven new genomes) from other marine environments suggest that clade-M and clade-S may have diversified in non-coral habitats, but they also consolidated a key role of distinct coral compartments in diversifying many of the above-mentioned traits. The unassigned Rhodobacteraceae population (214 genomes) varies only at a few dozen nucleotide sites across the whole genomes, but the number of between-compartment migration events predicted by the Slatkin–Maddison test supported that dispersal limitation between coral compartments is another key mechanism diversifying microbial populations. Collectively, our results suggest that different coral compartments represent ecologically distinct and microgeographically separate habitats that drive the evolution of the coral microbiota.</description><subject>45/22</subject><subject>45/23</subject><subject>631/158/855</subject><subject>631/326/41/2530</subject><subject>Animals</subject><subject>Anthozoa</subject><subject>Biomedical and Life Sciences</subject><subject>Compartments</subject><subject>Dispersal</subject><subject>Ecological effects</subject><subject>Ecology</subject><subject>Evolution</subject><subject>Evolutionary Biology</subject><subject>Genomes</subject><subject>Harbors</subject><subject>Life Sciences</subject><subject>Marine environment</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Mucus</subject><subject>Nucleotides</subject><subject>Oxidation</subject><subject>Population differentiation</subject><subject>Populations</subject><subject>Proline</subject><subject>Rhodobacteraceae</subject><subject>Sulfur</subject><subject>Sulfur oxidation</subject><subject>Swimming</subject><subject>Taurine</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UclOwzAUtBCIluUHOKBIXLgEvMV2LkioYpMqgRCcLcdxWldJXOwExN_jklKWAxfbT29m3jwPAEcIniFIxHmgiOQshRilEEGYp2wLjBHPUMoJh9ubN8MjsBfCAsKMM8Z3wYhQiDjM2BhMH9yyr1VnXZuUtqqMN21nh9pVyePcla5QujNeaaNMomrXzpI3280T7byq49ksle-aSAsHYKdSdTCH63sfPF9fPU1u0-n9zd3kcppqymmXCs5zZojIWFHllTYGKaIp0TkhohSMM8iYUVlOC6QZ55qUiiFRCIgwpRorsg8uBt1lXzSm1HF2tCKX3jbKv0unrPzdae1cztyrFBkWgtEocLoW8O6lN6GTjQ3a1LVqjeuDxBlBGAuawwg9-QNduN63cb2IEvGfo-GVIB5Q2rsQvKk2ZhCUq7DkEJaMYcnPsCSLpOOfa2woX-lEABkAIbbamfHfs_-R_QB3Y6CF</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Luo, Danli</creator><creator>Wang, Xiaojun</creator><creator>Feng, Xiaoyuan</creator><creator>Tian, Mengdan</creator><creator>Wang, Sishuo</creator><creator>Tang, Sen-Lin</creator><creator>Ang, Put</creator><creator>Yan, Aixin</creator><creator>Luo, Haiwei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2317-7821</orcidid><orcidid>https://orcid.org/0000-0002-7220-7305</orcidid><orcidid>https://orcid.org/0000-0002-0094-842X</orcidid><orcidid>https://orcid.org/0000-0001-8452-6066</orcidid><orcidid>https://orcid.org/0000-0002-5852-972X</orcidid><orcidid>https://orcid.org/0000-0003-0310-5492</orcidid></search><sort><creationdate>20211101</creationdate><title>Population differentiation of Rhodobacteraceae along with coral compartments</title><author>Luo, Danli ; Wang, Xiaojun ; Feng, Xiaoyuan ; Tian, Mengdan ; Wang, Sishuo ; Tang, Sen-Lin ; Ang, Put ; Yan, Aixin ; Luo, Haiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-87796e3856bf9fcee1a3c43c9338d8676066ea594b1c677c3da618b801244c2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>45/22</topic><topic>45/23</topic><topic>631/158/855</topic><topic>631/326/41/2530</topic><topic>Animals</topic><topic>Anthozoa</topic><topic>Biomedical and Life Sciences</topic><topic>Compartments</topic><topic>Dispersal</topic><topic>Ecological effects</topic><topic>Ecology</topic><topic>Evolution</topic><topic>Evolutionary Biology</topic><topic>Genomes</topic><topic>Harbors</topic><topic>Life Sciences</topic><topic>Marine environment</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Mucus</topic><topic>Nucleotides</topic><topic>Oxidation</topic><topic>Population differentiation</topic><topic>Populations</topic><topic>Proline</topic><topic>Rhodobacteraceae</topic><topic>Sulfur</topic><topic>Sulfur oxidation</topic><topic>Swimming</topic><topic>Taurine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Danli</creatorcontrib><creatorcontrib>Wang, Xiaojun</creatorcontrib><creatorcontrib>Feng, Xiaoyuan</creatorcontrib><creatorcontrib>Tian, Mengdan</creatorcontrib><creatorcontrib>Wang, Sishuo</creatorcontrib><creatorcontrib>Tang, Sen-Lin</creatorcontrib><creatorcontrib>Ang, Put</creatorcontrib><creatorcontrib>Yan, Aixin</creatorcontrib><creatorcontrib>Luo, Haiwei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Danli</au><au>Wang, Xiaojun</au><au>Feng, Xiaoyuan</au><au>Tian, Mengdan</au><au>Wang, Sishuo</au><au>Tang, Sen-Lin</au><au>Ang, Put</au><au>Yan, Aixin</au><au>Luo, Haiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Population differentiation of Rhodobacteraceae along with coral compartments</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>15</volume><issue>11</issue><spage>3286</spage><epage>3302</epage><pages>3286-3302</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Coral mucus, tissue, and skeleton harbor compositionally different microbiota, but how these coral compartments shape the microbial evolution remains unexplored. Here, we sampled bacteria inhabiting a prevalent coral species
Platygyra acuta
and sequenced genomes of 234 isolates comprising two populations in Rhodobacteraceae, an alphaproteobacterial lineage representing a significant but variable proportion (5–50%) of the coral microbiota. The
Ruegeria
population (20 genomes) contains three clades represented by eight, six, and six isolates predominantly sampled from the skeleton (outgroup), mucus (clade-M), and skeleton (clade-S), respectively. The clade-M possesses functions involved in the utilization of coral osmolytes abundant in the mucus (e.g., methylamines, DMSP, taurine, and L-proline), whereas the clade-S uniquely harbors traits that may promote adaptation to the low-energy and diurnally anoxic skeleton (e.g., sulfur oxidation and swimming motility). These between-clade genetic differences were largely supported by physiological assays. Expanded analyses by including genomes of 24 related isolates (including seven new genomes) from other marine environments suggest that clade-M and clade-S may have diversified in non-coral habitats, but they also consolidated a key role of distinct coral compartments in diversifying many of the above-mentioned traits. The unassigned Rhodobacteraceae population (214 genomes) varies only at a few dozen nucleotide sites across the whole genomes, but the number of between-compartment migration events predicted by the Slatkin–Maddison test supported that dispersal limitation between coral compartments is another key mechanism diversifying microbial populations. Collectively, our results suggest that different coral compartments represent ecologically distinct and microgeographically separate habitats that drive the evolution of the coral microbiota.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34017056</pmid><doi>10.1038/s41396-021-01009-6</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2317-7821</orcidid><orcidid>https://orcid.org/0000-0002-7220-7305</orcidid><orcidid>https://orcid.org/0000-0002-0094-842X</orcidid><orcidid>https://orcid.org/0000-0001-8452-6066</orcidid><orcidid>https://orcid.org/0000-0002-5852-972X</orcidid><orcidid>https://orcid.org/0000-0003-0310-5492</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-7362 |
ispartof | The ISME Journal, 2021-11, Vol.15 (11), p.3286-3302 |
issn | 1751-7362 1751-7370 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8528864 |
source | OUP_牛津大学出版社OA刊; MEDLINE; PubMed Central; EZB Electronic Journals Library |
subjects | 45/22 45/23 631/158/855 631/326/41/2530 Animals Anthozoa Biomedical and Life Sciences Compartments Dispersal Ecological effects Ecology Evolution Evolutionary Biology Genomes Harbors Life Sciences Marine environment Microbial Ecology Microbial Genetics and Genomics Microbiology Microbiota Microorganisms Mucus Nucleotides Oxidation Population differentiation Populations Proline Rhodobacteraceae Sulfur Sulfur oxidation Swimming Taurine |
title | Population differentiation of Rhodobacteraceae along with coral compartments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A33%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Population%20differentiation%20of%20Rhodobacteraceae%20along%20with%20coral%20compartments&rft.jtitle=The%20ISME%20Journal&rft.au=Luo,%20Danli&rft.date=2021-11-01&rft.volume=15&rft.issue=11&rft.spage=3286&rft.epage=3302&rft.pages=3286-3302&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/s41396-021-01009-6&rft_dat=%3Cproquest_pubme%3E2531228490%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583708674&rft_id=info:pmid/34017056&rfr_iscdi=true |