Non-hematopoietic IL-4Rα expression contributes to fructose-driven obesity and metabolic sequelae

Objective The risks of excess sugar intake in addition to high-fat diet consumption on immunopathogenesis of obesity-associated metabolic diseases are poorly defined. Interleukin-4 (IL-4) and IL-13 signaling via IL-4Rα regulates adipose tissue lipolysis, insulin sensitivity, and liver fibrosis in ob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Obesity 2021-11, Vol.45 (11), p.2377-2387
Hauptverfasser: Damen, Michelle S. M. A., Stankiewicz, Traci E., Park, Se-Hyung, Helsley, Robert N., Chan, Calvin C., Moreno-Fernandez, Maria E., Doll, Jessica R., Szabo, Sara, Herbert, De’Broski R., Softic, Samir, Divanovic, Senad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2387
container_issue 11
container_start_page 2377
container_title International Journal of Obesity
container_volume 45
creator Damen, Michelle S. M. A.
Stankiewicz, Traci E.
Park, Se-Hyung
Helsley, Robert N.
Chan, Calvin C.
Moreno-Fernandez, Maria E.
Doll, Jessica R.
Szabo, Sara
Herbert, De’Broski R.
Softic, Samir
Divanovic, Senad
description Objective The risks of excess sugar intake in addition to high-fat diet consumption on immunopathogenesis of obesity-associated metabolic diseases are poorly defined. Interleukin-4 (IL-4) and IL-13 signaling via IL-4Rα regulates adipose tissue lipolysis, insulin sensitivity, and liver fibrosis in obesity. However, the contribution of IL-4Rα to sugar rich diet-driven obesity and metabolic sequelae remains unknown. Methods WT, IL-4Rα-deficient (IL-4Rα −/− ) and STAT6-deficient mice (STAT6 −/− ) male mice were fed low-fat chow, high fat (HF) or HF plus high carbohydrate (HC/fructose) diet (HF + HC). Analysis included quantification of: (i) body weight, adiposity, energy expenditure, fructose metabolism, fatty acid oxidation/synthesis, glucose dysmetabolism and hepatocellular damage; (ii) the contribution of the hematopoietic or non-hematopoietic IL-4Rα expression; and (iii) the relevance of IL-4Rα downstream canonical STAT6 signaling pathway in this setting. Results We show that IL-4Rα regulated HF + HC diet-driven weight gain, whole body adiposity, adipose tissue inflammatory gene expression, energy expenditure, locomotor activity, glucose metabolism, hepatic steatosis, hepatic inflammatory gene expression and hepatocellular damage. These effects were potentially, and in part, dependent on non-hematopoietic IL-4Rα expression but were independent of direct STAT6 activation. Mechanistically, hepatic ketohexokinase-A and C expression was dependent on IL-4Rα, as it was reduced in IL-4Rα-deficient mice. KHK activity was also affected by HF + HC dietary challenge. Further, reduced expression/activity of KHK in IL-4Rα mice had a significant effect on fatty acid oxidation and fatty acid synthesis pathways. Conclusion Our findings highlight potential contribution of non-hematopoietic IL-4Rα activation of a non-canonical signaling pathway that regulates the HF + HC diet-driven induction of obesity and severity of obesity-associated sequelae.
doi_str_mv 10.1038/s41366-021-00902-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8528699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583708794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-5e431f56e6ab3f0f9905244173d6da70264ccbc9aec4e2499f43f8a3f8c9f5023</originalsourceid><addsrcrecordid>eNp9kU1uFDEQhS1ERIbABVigllgbyr_d3iChiIRIIyJFYW253eXE0Ux7sN1RciwuwpkwTAiwYWF5Ue999exHyCsGbxmI4V2RTGhNgTMKYIBT_YSsmOw1VdL0T8kKBPQUlFaH5HkpNwCgFPBn5FBI0Vycrcj4Oc30Greupl2KWKPvztZUXnz_1uHdLmMpMc2dT3PNcVwqlq6mLuTF11SQTjne4tylEUus952bp26L1Y1p0zgFvy64cfiCHAS3Kfjy4T4iX04-Xh5_ouvz07PjD2vqZS8rVSgFC0qjdqMIEIwBxaVkvZj05HrgWno_euPQS-TSmCBFGFw73oT2LHFE3u-5u2Xc4uSxZXYbu8tx6_K9TS7afydzvLZX6dYOig_amAZ48wDIqUUv1d6kJc8ts-VqED0MvZFNxfcqn1MpGcPjBgb2Zy9234ttP2x_9WJ1M73-O9uj5XcRTSD2gtJG8xXmP7v_g_0BANubvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583708794</pqid></control><display><type>article</type><title>Non-hematopoietic IL-4Rα expression contributes to fructose-driven obesity and metabolic sequelae</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Damen, Michelle S. M. A. ; Stankiewicz, Traci E. ; Park, Se-Hyung ; Helsley, Robert N. ; Chan, Calvin C. ; Moreno-Fernandez, Maria E. ; Doll, Jessica R. ; Szabo, Sara ; Herbert, De’Broski R. ; Softic, Samir ; Divanovic, Senad</creator><creatorcontrib>Damen, Michelle S. M. A. ; Stankiewicz, Traci E. ; Park, Se-Hyung ; Helsley, Robert N. ; Chan, Calvin C. ; Moreno-Fernandez, Maria E. ; Doll, Jessica R. ; Szabo, Sara ; Herbert, De’Broski R. ; Softic, Samir ; Divanovic, Senad</creatorcontrib><description>Objective The risks of excess sugar intake in addition to high-fat diet consumption on immunopathogenesis of obesity-associated metabolic diseases are poorly defined. Interleukin-4 (IL-4) and IL-13 signaling via IL-4Rα regulates adipose tissue lipolysis, insulin sensitivity, and liver fibrosis in obesity. However, the contribution of IL-4Rα to sugar rich diet-driven obesity and metabolic sequelae remains unknown. Methods WT, IL-4Rα-deficient (IL-4Rα −/− ) and STAT6-deficient mice (STAT6 −/− ) male mice were fed low-fat chow, high fat (HF) or HF plus high carbohydrate (HC/fructose) diet (HF + HC). Analysis included quantification of: (i) body weight, adiposity, energy expenditure, fructose metabolism, fatty acid oxidation/synthesis, glucose dysmetabolism and hepatocellular damage; (ii) the contribution of the hematopoietic or non-hematopoietic IL-4Rα expression; and (iii) the relevance of IL-4Rα downstream canonical STAT6 signaling pathway in this setting. Results We show that IL-4Rα regulated HF + HC diet-driven weight gain, whole body adiposity, adipose tissue inflammatory gene expression, energy expenditure, locomotor activity, glucose metabolism, hepatic steatosis, hepatic inflammatory gene expression and hepatocellular damage. These effects were potentially, and in part, dependent on non-hematopoietic IL-4Rα expression but were independent of direct STAT6 activation. Mechanistically, hepatic ketohexokinase-A and C expression was dependent on IL-4Rα, as it was reduced in IL-4Rα-deficient mice. KHK activity was also affected by HF + HC dietary challenge. Further, reduced expression/activity of KHK in IL-4Rα mice had a significant effect on fatty acid oxidation and fatty acid synthesis pathways. Conclusion Our findings highlight potential contribution of non-hematopoietic IL-4Rα activation of a non-canonical signaling pathway that regulates the HF + HC diet-driven induction of obesity and severity of obesity-associated sequelae.</description><identifier>ISSN: 0307-0565</identifier><identifier>EISSN: 1476-5497</identifier><identifier>DOI: 10.1038/s41366-021-00902-6</identifier><identifier>PMID: 34302121</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/21 ; 38/39 ; 38/77 ; 38/90 ; 631/250/249/2510 ; 64/60 ; 692/699/249/2510 ; 96/31 ; Adipose tissue ; Animals ; Body fat ; Body weight ; Body weight gain ; Carbohydrates ; Complications ; Damage ; Diet ; Disease Models, Animal ; Energy expenditure ; Energy metabolism ; Energy Metabolism - physiology ; Epidemiology ; Fatty acids ; Fatty liver ; Fibrosis ; Fructose ; Fructose - adverse effects ; Gene expression ; Glucose ; Glucose metabolism ; Health Promotion and Disease Prevention ; High carbohydrate diet ; High fat diet ; Immunopathogenesis ; Inflammation ; Insulin ; Insulin Resistance - physiology ; Interleukin 13 ; Interleukin 4 ; Interleukin-4 - analysis ; Interleukin-4 - metabolism ; Internal Medicine ; Ketohexokinase ; Lipolysis ; Locomotor activity ; Low fat diet ; Medicine ; Medicine &amp; Public Health ; Metabolic Diseases ; Metabolic disorders ; Metabolism ; Mice ; Obesity ; Obesity - immunology ; Obesity - metabolism ; Oxidation ; Public Health ; Signal transduction ; Signaling ; Sugar ; Synthesis</subject><ispartof>International Journal of Obesity, 2021-11, Vol.45 (11), p.2377-2387</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-5e431f56e6ab3f0f9905244173d6da70264ccbc9aec4e2499f43f8a3f8c9f5023</citedby><cites>FETCH-LOGICAL-c474t-5e431f56e6ab3f0f9905244173d6da70264ccbc9aec4e2499f43f8a3f8c9f5023</cites><orcidid>0000-0003-4617-2564 ; 0000-0002-9933-3061 ; 0000-0001-5225-801X ; 0000-0001-7538-0499 ; 0000-0001-5000-3187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34302121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Damen, Michelle S. M. A.</creatorcontrib><creatorcontrib>Stankiewicz, Traci E.</creatorcontrib><creatorcontrib>Park, Se-Hyung</creatorcontrib><creatorcontrib>Helsley, Robert N.</creatorcontrib><creatorcontrib>Chan, Calvin C.</creatorcontrib><creatorcontrib>Moreno-Fernandez, Maria E.</creatorcontrib><creatorcontrib>Doll, Jessica R.</creatorcontrib><creatorcontrib>Szabo, Sara</creatorcontrib><creatorcontrib>Herbert, De’Broski R.</creatorcontrib><creatorcontrib>Softic, Samir</creatorcontrib><creatorcontrib>Divanovic, Senad</creatorcontrib><title>Non-hematopoietic IL-4Rα expression contributes to fructose-driven obesity and metabolic sequelae</title><title>International Journal of Obesity</title><addtitle>Int J Obes</addtitle><addtitle>Int J Obes (Lond)</addtitle><description>Objective The risks of excess sugar intake in addition to high-fat diet consumption on immunopathogenesis of obesity-associated metabolic diseases are poorly defined. Interleukin-4 (IL-4) and IL-13 signaling via IL-4Rα regulates adipose tissue lipolysis, insulin sensitivity, and liver fibrosis in obesity. However, the contribution of IL-4Rα to sugar rich diet-driven obesity and metabolic sequelae remains unknown. Methods WT, IL-4Rα-deficient (IL-4Rα −/− ) and STAT6-deficient mice (STAT6 −/− ) male mice were fed low-fat chow, high fat (HF) or HF plus high carbohydrate (HC/fructose) diet (HF + HC). Analysis included quantification of: (i) body weight, adiposity, energy expenditure, fructose metabolism, fatty acid oxidation/synthesis, glucose dysmetabolism and hepatocellular damage; (ii) the contribution of the hematopoietic or non-hematopoietic IL-4Rα expression; and (iii) the relevance of IL-4Rα downstream canonical STAT6 signaling pathway in this setting. Results We show that IL-4Rα regulated HF + HC diet-driven weight gain, whole body adiposity, adipose tissue inflammatory gene expression, energy expenditure, locomotor activity, glucose metabolism, hepatic steatosis, hepatic inflammatory gene expression and hepatocellular damage. These effects were potentially, and in part, dependent on non-hematopoietic IL-4Rα expression but were independent of direct STAT6 activation. Mechanistically, hepatic ketohexokinase-A and C expression was dependent on IL-4Rα, as it was reduced in IL-4Rα-deficient mice. KHK activity was also affected by HF + HC dietary challenge. Further, reduced expression/activity of KHK in IL-4Rα mice had a significant effect on fatty acid oxidation and fatty acid synthesis pathways. Conclusion Our findings highlight potential contribution of non-hematopoietic IL-4Rα activation of a non-canonical signaling pathway that regulates the HF + HC diet-driven induction of obesity and severity of obesity-associated sequelae.</description><subject>13/21</subject><subject>38/39</subject><subject>38/77</subject><subject>38/90</subject><subject>631/250/249/2510</subject><subject>64/60</subject><subject>692/699/249/2510</subject><subject>96/31</subject><subject>Adipose tissue</subject><subject>Animals</subject><subject>Body fat</subject><subject>Body weight</subject><subject>Body weight gain</subject><subject>Carbohydrates</subject><subject>Complications</subject><subject>Damage</subject><subject>Diet</subject><subject>Disease Models, Animal</subject><subject>Energy expenditure</subject><subject>Energy metabolism</subject><subject>Energy Metabolism - physiology</subject><subject>Epidemiology</subject><subject>Fatty acids</subject><subject>Fatty liver</subject><subject>Fibrosis</subject><subject>Fructose</subject><subject>Fructose - adverse effects</subject><subject>Gene expression</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Health Promotion and Disease Prevention</subject><subject>High carbohydrate diet</subject><subject>High fat diet</subject><subject>Immunopathogenesis</subject><subject>Inflammation</subject><subject>Insulin</subject><subject>Insulin Resistance - physiology</subject><subject>Interleukin 13</subject><subject>Interleukin 4</subject><subject>Interleukin-4 - analysis</subject><subject>Interleukin-4 - metabolism</subject><subject>Internal Medicine</subject><subject>Ketohexokinase</subject><subject>Lipolysis</subject><subject>Locomotor activity</subject><subject>Low fat diet</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metabolic Diseases</subject><subject>Metabolic disorders</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Obesity</subject><subject>Obesity - immunology</subject><subject>Obesity - metabolism</subject><subject>Oxidation</subject><subject>Public Health</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Sugar</subject><subject>Synthesis</subject><issn>0307-0565</issn><issn>1476-5497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1uFDEQhS1ERIbABVigllgbyr_d3iChiIRIIyJFYW253eXE0Ux7sN1RciwuwpkwTAiwYWF5Ue999exHyCsGbxmI4V2RTGhNgTMKYIBT_YSsmOw1VdL0T8kKBPQUlFaH5HkpNwCgFPBn5FBI0Vycrcj4Oc30Greupl2KWKPvztZUXnz_1uHdLmMpMc2dT3PNcVwqlq6mLuTF11SQTjne4tylEUus952bp26L1Y1p0zgFvy64cfiCHAS3Kfjy4T4iX04-Xh5_ouvz07PjD2vqZS8rVSgFC0qjdqMIEIwBxaVkvZj05HrgWno_euPQS-TSmCBFGFw73oT2LHFE3u-5u2Xc4uSxZXYbu8tx6_K9TS7afydzvLZX6dYOig_amAZ48wDIqUUv1d6kJc8ts-VqED0MvZFNxfcqn1MpGcPjBgb2Zy9234ttP2x_9WJ1M73-O9uj5XcRTSD2gtJG8xXmP7v_g_0BANubvg</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Damen, Michelle S. M. A.</creator><creator>Stankiewicz, Traci E.</creator><creator>Park, Se-Hyung</creator><creator>Helsley, Robert N.</creator><creator>Chan, Calvin C.</creator><creator>Moreno-Fernandez, Maria E.</creator><creator>Doll, Jessica R.</creator><creator>Szabo, Sara</creator><creator>Herbert, De’Broski R.</creator><creator>Softic, Samir</creator><creator>Divanovic, Senad</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T2</scope><scope>7TK</scope><scope>7TS</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4617-2564</orcidid><orcidid>https://orcid.org/0000-0002-9933-3061</orcidid><orcidid>https://orcid.org/0000-0001-5225-801X</orcidid><orcidid>https://orcid.org/0000-0001-7538-0499</orcidid><orcidid>https://orcid.org/0000-0001-5000-3187</orcidid></search><sort><creationdate>20211101</creationdate><title>Non-hematopoietic IL-4Rα expression contributes to fructose-driven obesity and metabolic sequelae</title><author>Damen, Michelle S. M. A. ; Stankiewicz, Traci E. ; Park, Se-Hyung ; Helsley, Robert N. ; Chan, Calvin C. ; Moreno-Fernandez, Maria E. ; Doll, Jessica R. ; Szabo, Sara ; Herbert, De’Broski R. ; Softic, Samir ; Divanovic, Senad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-5e431f56e6ab3f0f9905244173d6da70264ccbc9aec4e2499f43f8a3f8c9f5023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13/21</topic><topic>38/39</topic><topic>38/77</topic><topic>38/90</topic><topic>631/250/249/2510</topic><topic>64/60</topic><topic>692/699/249/2510</topic><topic>96/31</topic><topic>Adipose tissue</topic><topic>Animals</topic><topic>Body fat</topic><topic>Body weight</topic><topic>Body weight gain</topic><topic>Carbohydrates</topic><topic>Complications</topic><topic>Damage</topic><topic>Diet</topic><topic>Disease Models, Animal</topic><topic>Energy expenditure</topic><topic>Energy metabolism</topic><topic>Energy Metabolism - physiology</topic><topic>Epidemiology</topic><topic>Fatty acids</topic><topic>Fatty liver</topic><topic>Fibrosis</topic><topic>Fructose</topic><topic>Fructose - adverse effects</topic><topic>Gene expression</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Health Promotion and Disease Prevention</topic><topic>High carbohydrate diet</topic><topic>High fat diet</topic><topic>Immunopathogenesis</topic><topic>Inflammation</topic><topic>Insulin</topic><topic>Insulin Resistance - physiology</topic><topic>Interleukin 13</topic><topic>Interleukin 4</topic><topic>Interleukin-4 - analysis</topic><topic>Interleukin-4 - metabolism</topic><topic>Internal Medicine</topic><topic>Ketohexokinase</topic><topic>Lipolysis</topic><topic>Locomotor activity</topic><topic>Low fat diet</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metabolic Diseases</topic><topic>Metabolic disorders</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Obesity</topic><topic>Obesity - immunology</topic><topic>Obesity - metabolism</topic><topic>Oxidation</topic><topic>Public Health</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Sugar</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Damen, Michelle S. M. A.</creatorcontrib><creatorcontrib>Stankiewicz, Traci E.</creatorcontrib><creatorcontrib>Park, Se-Hyung</creatorcontrib><creatorcontrib>Helsley, Robert N.</creatorcontrib><creatorcontrib>Chan, Calvin C.</creatorcontrib><creatorcontrib>Moreno-Fernandez, Maria E.</creatorcontrib><creatorcontrib>Doll, Jessica R.</creatorcontrib><creatorcontrib>Szabo, Sara</creatorcontrib><creatorcontrib>Herbert, De’Broski R.</creatorcontrib><creatorcontrib>Softic, Samir</creatorcontrib><creatorcontrib>Divanovic, Senad</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International Journal of Obesity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Damen, Michelle S. M. A.</au><au>Stankiewicz, Traci E.</au><au>Park, Se-Hyung</au><au>Helsley, Robert N.</au><au>Chan, Calvin C.</au><au>Moreno-Fernandez, Maria E.</au><au>Doll, Jessica R.</au><au>Szabo, Sara</au><au>Herbert, De’Broski R.</au><au>Softic, Samir</au><au>Divanovic, Senad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-hematopoietic IL-4Rα expression contributes to fructose-driven obesity and metabolic sequelae</atitle><jtitle>International Journal of Obesity</jtitle><stitle>Int J Obes</stitle><addtitle>Int J Obes (Lond)</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>45</volume><issue>11</issue><spage>2377</spage><epage>2387</epage><pages>2377-2387</pages><issn>0307-0565</issn><eissn>1476-5497</eissn><abstract>Objective The risks of excess sugar intake in addition to high-fat diet consumption on immunopathogenesis of obesity-associated metabolic diseases are poorly defined. Interleukin-4 (IL-4) and IL-13 signaling via IL-4Rα regulates adipose tissue lipolysis, insulin sensitivity, and liver fibrosis in obesity. However, the contribution of IL-4Rα to sugar rich diet-driven obesity and metabolic sequelae remains unknown. Methods WT, IL-4Rα-deficient (IL-4Rα −/− ) and STAT6-deficient mice (STAT6 −/− ) male mice were fed low-fat chow, high fat (HF) or HF plus high carbohydrate (HC/fructose) diet (HF + HC). Analysis included quantification of: (i) body weight, adiposity, energy expenditure, fructose metabolism, fatty acid oxidation/synthesis, glucose dysmetabolism and hepatocellular damage; (ii) the contribution of the hematopoietic or non-hematopoietic IL-4Rα expression; and (iii) the relevance of IL-4Rα downstream canonical STAT6 signaling pathway in this setting. Results We show that IL-4Rα regulated HF + HC diet-driven weight gain, whole body adiposity, adipose tissue inflammatory gene expression, energy expenditure, locomotor activity, glucose metabolism, hepatic steatosis, hepatic inflammatory gene expression and hepatocellular damage. These effects were potentially, and in part, dependent on non-hematopoietic IL-4Rα expression but were independent of direct STAT6 activation. Mechanistically, hepatic ketohexokinase-A and C expression was dependent on IL-4Rα, as it was reduced in IL-4Rα-deficient mice. KHK activity was also affected by HF + HC dietary challenge. Further, reduced expression/activity of KHK in IL-4Rα mice had a significant effect on fatty acid oxidation and fatty acid synthesis pathways. Conclusion Our findings highlight potential contribution of non-hematopoietic IL-4Rα activation of a non-canonical signaling pathway that regulates the HF + HC diet-driven induction of obesity and severity of obesity-associated sequelae.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34302121</pmid><doi>10.1038/s41366-021-00902-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4617-2564</orcidid><orcidid>https://orcid.org/0000-0002-9933-3061</orcidid><orcidid>https://orcid.org/0000-0001-5225-801X</orcidid><orcidid>https://orcid.org/0000-0001-7538-0499</orcidid><orcidid>https://orcid.org/0000-0001-5000-3187</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-0565
ispartof International Journal of Obesity, 2021-11, Vol.45 (11), p.2377-2387
issn 0307-0565
1476-5497
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8528699
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 13/21
38/39
38/77
38/90
631/250/249/2510
64/60
692/699/249/2510
96/31
Adipose tissue
Animals
Body fat
Body weight
Body weight gain
Carbohydrates
Complications
Damage
Diet
Disease Models, Animal
Energy expenditure
Energy metabolism
Energy Metabolism - physiology
Epidemiology
Fatty acids
Fatty liver
Fibrosis
Fructose
Fructose - adverse effects
Gene expression
Glucose
Glucose metabolism
Health Promotion and Disease Prevention
High carbohydrate diet
High fat diet
Immunopathogenesis
Inflammation
Insulin
Insulin Resistance - physiology
Interleukin 13
Interleukin 4
Interleukin-4 - analysis
Interleukin-4 - metabolism
Internal Medicine
Ketohexokinase
Lipolysis
Locomotor activity
Low fat diet
Medicine
Medicine & Public Health
Metabolic Diseases
Metabolic disorders
Metabolism
Mice
Obesity
Obesity - immunology
Obesity - metabolism
Oxidation
Public Health
Signal transduction
Signaling
Sugar
Synthesis
title Non-hematopoietic IL-4Rα expression contributes to fructose-driven obesity and metabolic sequelae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-hematopoietic%20IL-4R%CE%B1%20expression%20contributes%20to%20fructose-driven%20obesity%20and%20metabolic%20sequelae&rft.jtitle=International%20Journal%20of%20Obesity&rft.au=Damen,%20Michelle%20S.%20M.%20A.&rft.date=2021-11-01&rft.volume=45&rft.issue=11&rft.spage=2377&rft.epage=2387&rft.pages=2377-2387&rft.issn=0307-0565&rft.eissn=1476-5497&rft_id=info:doi/10.1038/s41366-021-00902-6&rft_dat=%3Cproquest_pubme%3E2583708794%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583708794&rft_id=info:pmid/34302121&rfr_iscdi=true