Immunogenomics of Colorectal Cancer Response to Checkpoint Blockade: Analysis of the KEYNOTE 177 Trial and Validation Cohorts

Colorectal cancer (CRC) shows variable response to immune checkpoint blockade, which can only partially be explained by high tumor mutational burden (TMB). We conducted an integrated study of the cancer tissue and associated tumor microenvironment (TME) from patients treated with pembrolizumab (KEYN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gastroenterology (New York, N.Y. 1943) N.Y. 1943), 2021-10, Vol.161 (4), p.1179-1193
Hauptverfasser: Bortolomeazzi, Michele, Keddar, Mohamed Reda, Montorsi, Lucia, Acha-Sagredo, Amelia, Benedetti, Lorena, Temelkovski, Damjan, Choi, Subin, Petrov, Nedyalko, Todd, Katrina, Wai, Patty, Kohl, Johannes, Denner, Tamara, Nye, Emma, Goldstone, Robert, Ward, Sophia, Wilson, Gareth A., Al Bakir, Maise, Swanton, Charles, John, Susan, Miles, James, Larijani, Banafshe, Kunene, Victoria, Fontana, Elisa, Arkenau, Hendrik-Tobias, Parker, Peter J., Rodriguez-Justo, Manuel, Shiu, Kai-Keen, Spencer, Jo, Ciccarelli, Francesca D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1193
container_issue 4
container_start_page 1179
container_title Gastroenterology (New York, N.Y. 1943)
container_volume 161
creator Bortolomeazzi, Michele
Keddar, Mohamed Reda
Montorsi, Lucia
Acha-Sagredo, Amelia
Benedetti, Lorena
Temelkovski, Damjan
Choi, Subin
Petrov, Nedyalko
Todd, Katrina
Wai, Patty
Kohl, Johannes
Denner, Tamara
Nye, Emma
Goldstone, Robert
Ward, Sophia
Wilson, Gareth A.
Al Bakir, Maise
Swanton, Charles
John, Susan
Miles, James
Larijani, Banafshe
Kunene, Victoria
Fontana, Elisa
Arkenau, Hendrik-Tobias
Parker, Peter J.
Rodriguez-Justo, Manuel
Shiu, Kai-Keen
Spencer, Jo
Ciccarelli, Francesca D.
description Colorectal cancer (CRC) shows variable response to immune checkpoint blockade, which can only partially be explained by high tumor mutational burden (TMB). We conducted an integrated study of the cancer tissue and associated tumor microenvironment (TME) from patients treated with pembrolizumab (KEYNOTE 177 clinical trial) or nivolumab to dissect the cellular and molecular determinants of response to anti- programmed cell death 1 (PD1) immunotherapy. We selected multiple regions per tumor showing variable T-cell infiltration for a total of 738 regions from 29 patients, divided into discovery and validation cohorts. We performed multiregional whole-exome and RNA sequencing of the tumor cells and integrated these with T-cell receptor sequencing, high-dimensional imaging mass cytometry, detection of programmed death-ligand 1 (PDL1) interaction in situ, multiplexed immunofluorescence, and computational spatial analysis of the TME. In hypermutated CRCs, response to anti-PD1 immunotherapy was not associated with TMB but with high clonality of immunogenic mutations, clonally expanded T cells, low activation of Wnt signaling, deregulation of the interferon gamma pathway, and active immune escape mechanisms. Responsive hypermutated CRCs were also rich in cytotoxic and proliferating PD1+CD8 T cells interacting with PDL1+ antigen-presenting macrophages. Our study clarified the limits of TMB as a predictor of response of CRC to anti-PD1 immunotherapy. It identified a population of antigen-presenting macrophages interacting with CD8 T cells that consistently segregate with response. We therefore concluded that anti-PD1 agents release the PD1-PDL1 interaction between CD8 T cells and macrophages to promote cytotoxic antitumor activity. [Display omitted] Colorectal cancers responsive to anti-programmed cell death 1 immunotherapy show clonal immunogenic mutations, low Wnt activation, beta-2-microglobulin deregulation, and high infiltration of antigen presenting macrophages interacting with programmed cell death 1-positive cluster of differentiation 8 T cells.
doi_str_mv 10.1053/j.gastro.2021.06.064
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8527923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016508521031784</els_id><sourcerecordid>34197832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-140a93a6129a1b2d960b5e0fd2b6525a94378e814362585371099765b6f0439a3</originalsourceid><addsrcrecordid>eNp9kd9qFDEUxoModm19A5G8wKz5PxMvhDpstbRYkG2hVyGTyexmO5MsSVrola_SZ-mTmXVr1RvhwLk4fN93zvkB8A6jOUacftjMVzrlGOYEETxHohR7AWaYk6ZCCJOXYFaaqDhq-AF4k9IGISRpg1-DA8qwrBtKZuDH6TTd-rCyPkzOJBgG2IYxRGuyHmGrvbERfrdpG3yyMAfYrq252Qbn8-PD5zGYG93bj_DY6_E-uV_6vLbwbHH97WK5gLiu4TK6YqV9__hwpUfX6-yCLynrEHM6Aq8GPSb79qkfgsuTxbL9Wp1ffDltj88rwwTNFWZIS6oFJlLjjvRSoI5bNPSkE5xwLRmtG9tgRgXhDac1RlLWgndiQIxKTQ_Bp73v9rabbG-sz1GPahvdpOO9CtqpfyferdUq3KmGk1oSWgzY3sDEkFK0w7MWI7UDojZqD0TtgCgkSrEie_937rPoN4E_i9ly_Z2zUSXjbHl773YQVB_c_xN-AobioLc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Immunogenomics of Colorectal Cancer Response to Checkpoint Blockade: Analysis of the KEYNOTE 177 Trial and Validation Cohorts</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Bortolomeazzi, Michele ; Keddar, Mohamed Reda ; Montorsi, Lucia ; Acha-Sagredo, Amelia ; Benedetti, Lorena ; Temelkovski, Damjan ; Choi, Subin ; Petrov, Nedyalko ; Todd, Katrina ; Wai, Patty ; Kohl, Johannes ; Denner, Tamara ; Nye, Emma ; Goldstone, Robert ; Ward, Sophia ; Wilson, Gareth A. ; Al Bakir, Maise ; Swanton, Charles ; John, Susan ; Miles, James ; Larijani, Banafshe ; Kunene, Victoria ; Fontana, Elisa ; Arkenau, Hendrik-Tobias ; Parker, Peter J. ; Rodriguez-Justo, Manuel ; Shiu, Kai-Keen ; Spencer, Jo ; Ciccarelli, Francesca D.</creator><creatorcontrib>Bortolomeazzi, Michele ; Keddar, Mohamed Reda ; Montorsi, Lucia ; Acha-Sagredo, Amelia ; Benedetti, Lorena ; Temelkovski, Damjan ; Choi, Subin ; Petrov, Nedyalko ; Todd, Katrina ; Wai, Patty ; Kohl, Johannes ; Denner, Tamara ; Nye, Emma ; Goldstone, Robert ; Ward, Sophia ; Wilson, Gareth A. ; Al Bakir, Maise ; Swanton, Charles ; John, Susan ; Miles, James ; Larijani, Banafshe ; Kunene, Victoria ; Fontana, Elisa ; Arkenau, Hendrik-Tobias ; Parker, Peter J. ; Rodriguez-Justo, Manuel ; Shiu, Kai-Keen ; Spencer, Jo ; Ciccarelli, Francesca D.</creatorcontrib><description>Colorectal cancer (CRC) shows variable response to immune checkpoint blockade, which can only partially be explained by high tumor mutational burden (TMB). We conducted an integrated study of the cancer tissue and associated tumor microenvironment (TME) from patients treated with pembrolizumab (KEYNOTE 177 clinical trial) or nivolumab to dissect the cellular and molecular determinants of response to anti- programmed cell death 1 (PD1) immunotherapy. We selected multiple regions per tumor showing variable T-cell infiltration for a total of 738 regions from 29 patients, divided into discovery and validation cohorts. We performed multiregional whole-exome and RNA sequencing of the tumor cells and integrated these with T-cell receptor sequencing, high-dimensional imaging mass cytometry, detection of programmed death-ligand 1 (PDL1) interaction in situ, multiplexed immunofluorescence, and computational spatial analysis of the TME. In hypermutated CRCs, response to anti-PD1 immunotherapy was not associated with TMB but with high clonality of immunogenic mutations, clonally expanded T cells, low activation of Wnt signaling, deregulation of the interferon gamma pathway, and active immune escape mechanisms. Responsive hypermutated CRCs were also rich in cytotoxic and proliferating PD1+CD8 T cells interacting with PDL1+ antigen-presenting macrophages. Our study clarified the limits of TMB as a predictor of response of CRC to anti-PD1 immunotherapy. It identified a population of antigen-presenting macrophages interacting with CD8 T cells that consistently segregate with response. We therefore concluded that anti-PD1 agents release the PD1-PDL1 interaction between CD8 T cells and macrophages to promote cytotoxic antitumor activity. [Display omitted] Colorectal cancers responsive to anti-programmed cell death 1 immunotherapy show clonal immunogenic mutations, low Wnt activation, beta-2-microglobulin deregulation, and high infiltration of antigen presenting macrophages interacting with programmed cell death 1-positive cluster of differentiation 8 T cells.</description><identifier>ISSN: 0016-5085</identifier><identifier>EISSN: 1528-0012</identifier><identifier>DOI: 10.1053/j.gastro.2021.06.064</identifier><identifier>PMID: 34197832</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Anti-PD1 Immunotherapy ; Antibodies, Monoclonal, Humanized - adverse effects ; Antibodies, Monoclonal, Humanized - therapeutic use ; Biomarkers, Tumor - genetics ; CD8 T cells ; CD8-Positive T-Lymphocytes - drug effects ; CD8-Positive T-Lymphocytes - immunology ; Clinical Trials as Topic ; Colorectal Neoplasms - drug therapy ; Colorectal Neoplasms - genetics ; Colorectal Neoplasms - immunology ; Cytotoxicity, Immunologic - drug effects ; Exome Sequencing ; Gene Expression Profiling ; Humans ; Immune Checkpoint Inhibitors - adverse effects ; Immune Checkpoint Inhibitors - therapeutic use ; Immunogenetic Phenomena ; Immunogenetics ; Interferon Gamma ; Lymphocytes, Tumor-Infiltrating - drug effects ; Lymphocytes, Tumor-Infiltrating - immunology ; Mutation ; Nivolumab - adverse effects ; Nivolumab - therapeutic use ; Original Research ; Predictive Value of Tests ; Programmed Cell Death 1 Receptor - antagonists &amp; inhibitors ; Reproducibility of Results ; RNA-Seq ; Time Factors ; Transcriptome ; Treatment Outcome ; Tumor Microenvironment ; Tumor Mutational Burden ; Tumor-Associated Macrophages - drug effects ; Tumor-Associated Macrophages - immunology ; Wnt Signaling</subject><ispartof>Gastroenterology (New York, N.Y. 1943), 2021-10, Vol.161 (4), p.1179-1193</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2021 The Authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-140a93a6129a1b2d960b5e0fd2b6525a94378e814362585371099765b6f0439a3</citedby><cites>FETCH-LOGICAL-c463t-140a93a6129a1b2d960b5e0fd2b6525a94378e814362585371099765b6f0439a3</cites><orcidid>0000-0002-9325-0900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1053/j.gastro.2021.06.064$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34197832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bortolomeazzi, Michele</creatorcontrib><creatorcontrib>Keddar, Mohamed Reda</creatorcontrib><creatorcontrib>Montorsi, Lucia</creatorcontrib><creatorcontrib>Acha-Sagredo, Amelia</creatorcontrib><creatorcontrib>Benedetti, Lorena</creatorcontrib><creatorcontrib>Temelkovski, Damjan</creatorcontrib><creatorcontrib>Choi, Subin</creatorcontrib><creatorcontrib>Petrov, Nedyalko</creatorcontrib><creatorcontrib>Todd, Katrina</creatorcontrib><creatorcontrib>Wai, Patty</creatorcontrib><creatorcontrib>Kohl, Johannes</creatorcontrib><creatorcontrib>Denner, Tamara</creatorcontrib><creatorcontrib>Nye, Emma</creatorcontrib><creatorcontrib>Goldstone, Robert</creatorcontrib><creatorcontrib>Ward, Sophia</creatorcontrib><creatorcontrib>Wilson, Gareth A.</creatorcontrib><creatorcontrib>Al Bakir, Maise</creatorcontrib><creatorcontrib>Swanton, Charles</creatorcontrib><creatorcontrib>John, Susan</creatorcontrib><creatorcontrib>Miles, James</creatorcontrib><creatorcontrib>Larijani, Banafshe</creatorcontrib><creatorcontrib>Kunene, Victoria</creatorcontrib><creatorcontrib>Fontana, Elisa</creatorcontrib><creatorcontrib>Arkenau, Hendrik-Tobias</creatorcontrib><creatorcontrib>Parker, Peter J.</creatorcontrib><creatorcontrib>Rodriguez-Justo, Manuel</creatorcontrib><creatorcontrib>Shiu, Kai-Keen</creatorcontrib><creatorcontrib>Spencer, Jo</creatorcontrib><creatorcontrib>Ciccarelli, Francesca D.</creatorcontrib><title>Immunogenomics of Colorectal Cancer Response to Checkpoint Blockade: Analysis of the KEYNOTE 177 Trial and Validation Cohorts</title><title>Gastroenterology (New York, N.Y. 1943)</title><addtitle>Gastroenterology</addtitle><description>Colorectal cancer (CRC) shows variable response to immune checkpoint blockade, which can only partially be explained by high tumor mutational burden (TMB). We conducted an integrated study of the cancer tissue and associated tumor microenvironment (TME) from patients treated with pembrolizumab (KEYNOTE 177 clinical trial) or nivolumab to dissect the cellular and molecular determinants of response to anti- programmed cell death 1 (PD1) immunotherapy. We selected multiple regions per tumor showing variable T-cell infiltration for a total of 738 regions from 29 patients, divided into discovery and validation cohorts. We performed multiregional whole-exome and RNA sequencing of the tumor cells and integrated these with T-cell receptor sequencing, high-dimensional imaging mass cytometry, detection of programmed death-ligand 1 (PDL1) interaction in situ, multiplexed immunofluorescence, and computational spatial analysis of the TME. In hypermutated CRCs, response to anti-PD1 immunotherapy was not associated with TMB but with high clonality of immunogenic mutations, clonally expanded T cells, low activation of Wnt signaling, deregulation of the interferon gamma pathway, and active immune escape mechanisms. Responsive hypermutated CRCs were also rich in cytotoxic and proliferating PD1+CD8 T cells interacting with PDL1+ antigen-presenting macrophages. Our study clarified the limits of TMB as a predictor of response of CRC to anti-PD1 immunotherapy. It identified a population of antigen-presenting macrophages interacting with CD8 T cells that consistently segregate with response. We therefore concluded that anti-PD1 agents release the PD1-PDL1 interaction between CD8 T cells and macrophages to promote cytotoxic antitumor activity. [Display omitted] Colorectal cancers responsive to anti-programmed cell death 1 immunotherapy show clonal immunogenic mutations, low Wnt activation, beta-2-microglobulin deregulation, and high infiltration of antigen presenting macrophages interacting with programmed cell death 1-positive cluster of differentiation 8 T cells.</description><subject>Anti-PD1 Immunotherapy</subject><subject>Antibodies, Monoclonal, Humanized - adverse effects</subject><subject>Antibodies, Monoclonal, Humanized - therapeutic use</subject><subject>Biomarkers, Tumor - genetics</subject><subject>CD8 T cells</subject><subject>CD8-Positive T-Lymphocytes - drug effects</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>Clinical Trials as Topic</subject><subject>Colorectal Neoplasms - drug therapy</subject><subject>Colorectal Neoplasms - genetics</subject><subject>Colorectal Neoplasms - immunology</subject><subject>Cytotoxicity, Immunologic - drug effects</subject><subject>Exome Sequencing</subject><subject>Gene Expression Profiling</subject><subject>Humans</subject><subject>Immune Checkpoint Inhibitors - adverse effects</subject><subject>Immune Checkpoint Inhibitors - therapeutic use</subject><subject>Immunogenetic Phenomena</subject><subject>Immunogenetics</subject><subject>Interferon Gamma</subject><subject>Lymphocytes, Tumor-Infiltrating - drug effects</subject><subject>Lymphocytes, Tumor-Infiltrating - immunology</subject><subject>Mutation</subject><subject>Nivolumab - adverse effects</subject><subject>Nivolumab - therapeutic use</subject><subject>Original Research</subject><subject>Predictive Value of Tests</subject><subject>Programmed Cell Death 1 Receptor - antagonists &amp; inhibitors</subject><subject>Reproducibility of Results</subject><subject>RNA-Seq</subject><subject>Time Factors</subject><subject>Transcriptome</subject><subject>Treatment Outcome</subject><subject>Tumor Microenvironment</subject><subject>Tumor Mutational Burden</subject><subject>Tumor-Associated Macrophages - drug effects</subject><subject>Tumor-Associated Macrophages - immunology</subject><subject>Wnt Signaling</subject><issn>0016-5085</issn><issn>1528-0012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kd9qFDEUxoModm19A5G8wKz5PxMvhDpstbRYkG2hVyGTyexmO5MsSVrola_SZ-mTmXVr1RvhwLk4fN93zvkB8A6jOUacftjMVzrlGOYEETxHohR7AWaYk6ZCCJOXYFaaqDhq-AF4k9IGISRpg1-DA8qwrBtKZuDH6TTd-rCyPkzOJBgG2IYxRGuyHmGrvbERfrdpG3yyMAfYrq252Qbn8-PD5zGYG93bj_DY6_E-uV_6vLbwbHH97WK5gLiu4TK6YqV9__hwpUfX6-yCLynrEHM6Aq8GPSb79qkfgsuTxbL9Wp1ffDltj88rwwTNFWZIS6oFJlLjjvRSoI5bNPSkE5xwLRmtG9tgRgXhDac1RlLWgndiQIxKTQ_Bp73v9rabbG-sz1GPahvdpOO9CtqpfyferdUq3KmGk1oSWgzY3sDEkFK0w7MWI7UDojZqD0TtgCgkSrEie_937rPoN4E_i9ly_Z2zUSXjbHl773YQVB_c_xN-AobioLc</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Bortolomeazzi, Michele</creator><creator>Keddar, Mohamed Reda</creator><creator>Montorsi, Lucia</creator><creator>Acha-Sagredo, Amelia</creator><creator>Benedetti, Lorena</creator><creator>Temelkovski, Damjan</creator><creator>Choi, Subin</creator><creator>Petrov, Nedyalko</creator><creator>Todd, Katrina</creator><creator>Wai, Patty</creator><creator>Kohl, Johannes</creator><creator>Denner, Tamara</creator><creator>Nye, Emma</creator><creator>Goldstone, Robert</creator><creator>Ward, Sophia</creator><creator>Wilson, Gareth A.</creator><creator>Al Bakir, Maise</creator><creator>Swanton, Charles</creator><creator>John, Susan</creator><creator>Miles, James</creator><creator>Larijani, Banafshe</creator><creator>Kunene, Victoria</creator><creator>Fontana, Elisa</creator><creator>Arkenau, Hendrik-Tobias</creator><creator>Parker, Peter J.</creator><creator>Rodriguez-Justo, Manuel</creator><creator>Shiu, Kai-Keen</creator><creator>Spencer, Jo</creator><creator>Ciccarelli, Francesca D.</creator><general>Elsevier Inc</general><general>W.B. Saunders</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9325-0900</orcidid></search><sort><creationdate>202110</creationdate><title>Immunogenomics of Colorectal Cancer Response to Checkpoint Blockade: Analysis of the KEYNOTE 177 Trial and Validation Cohorts</title><author>Bortolomeazzi, Michele ; Keddar, Mohamed Reda ; Montorsi, Lucia ; Acha-Sagredo, Amelia ; Benedetti, Lorena ; Temelkovski, Damjan ; Choi, Subin ; Petrov, Nedyalko ; Todd, Katrina ; Wai, Patty ; Kohl, Johannes ; Denner, Tamara ; Nye, Emma ; Goldstone, Robert ; Ward, Sophia ; Wilson, Gareth A. ; Al Bakir, Maise ; Swanton, Charles ; John, Susan ; Miles, James ; Larijani, Banafshe ; Kunene, Victoria ; Fontana, Elisa ; Arkenau, Hendrik-Tobias ; Parker, Peter J. ; Rodriguez-Justo, Manuel ; Shiu, Kai-Keen ; Spencer, Jo ; Ciccarelli, Francesca D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-140a93a6129a1b2d960b5e0fd2b6525a94378e814362585371099765b6f0439a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anti-PD1 Immunotherapy</topic><topic>Antibodies, Monoclonal, Humanized - adverse effects</topic><topic>Antibodies, Monoclonal, Humanized - therapeutic use</topic><topic>Biomarkers, Tumor - genetics</topic><topic>CD8 T cells</topic><topic>CD8-Positive T-Lymphocytes - drug effects</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>Clinical Trials as Topic</topic><topic>Colorectal Neoplasms - drug therapy</topic><topic>Colorectal Neoplasms - genetics</topic><topic>Colorectal Neoplasms - immunology</topic><topic>Cytotoxicity, Immunologic - drug effects</topic><topic>Exome Sequencing</topic><topic>Gene Expression Profiling</topic><topic>Humans</topic><topic>Immune Checkpoint Inhibitors - adverse effects</topic><topic>Immune Checkpoint Inhibitors - therapeutic use</topic><topic>Immunogenetic Phenomena</topic><topic>Immunogenetics</topic><topic>Interferon Gamma</topic><topic>Lymphocytes, Tumor-Infiltrating - drug effects</topic><topic>Lymphocytes, Tumor-Infiltrating - immunology</topic><topic>Mutation</topic><topic>Nivolumab - adverse effects</topic><topic>Nivolumab - therapeutic use</topic><topic>Original Research</topic><topic>Predictive Value of Tests</topic><topic>Programmed Cell Death 1 Receptor - antagonists &amp; inhibitors</topic><topic>Reproducibility of Results</topic><topic>RNA-Seq</topic><topic>Time Factors</topic><topic>Transcriptome</topic><topic>Treatment Outcome</topic><topic>Tumor Microenvironment</topic><topic>Tumor Mutational Burden</topic><topic>Tumor-Associated Macrophages - drug effects</topic><topic>Tumor-Associated Macrophages - immunology</topic><topic>Wnt Signaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bortolomeazzi, Michele</creatorcontrib><creatorcontrib>Keddar, Mohamed Reda</creatorcontrib><creatorcontrib>Montorsi, Lucia</creatorcontrib><creatorcontrib>Acha-Sagredo, Amelia</creatorcontrib><creatorcontrib>Benedetti, Lorena</creatorcontrib><creatorcontrib>Temelkovski, Damjan</creatorcontrib><creatorcontrib>Choi, Subin</creatorcontrib><creatorcontrib>Petrov, Nedyalko</creatorcontrib><creatorcontrib>Todd, Katrina</creatorcontrib><creatorcontrib>Wai, Patty</creatorcontrib><creatorcontrib>Kohl, Johannes</creatorcontrib><creatorcontrib>Denner, Tamara</creatorcontrib><creatorcontrib>Nye, Emma</creatorcontrib><creatorcontrib>Goldstone, Robert</creatorcontrib><creatorcontrib>Ward, Sophia</creatorcontrib><creatorcontrib>Wilson, Gareth A.</creatorcontrib><creatorcontrib>Al Bakir, Maise</creatorcontrib><creatorcontrib>Swanton, Charles</creatorcontrib><creatorcontrib>John, Susan</creatorcontrib><creatorcontrib>Miles, James</creatorcontrib><creatorcontrib>Larijani, Banafshe</creatorcontrib><creatorcontrib>Kunene, Victoria</creatorcontrib><creatorcontrib>Fontana, Elisa</creatorcontrib><creatorcontrib>Arkenau, Hendrik-Tobias</creatorcontrib><creatorcontrib>Parker, Peter J.</creatorcontrib><creatorcontrib>Rodriguez-Justo, Manuel</creatorcontrib><creatorcontrib>Shiu, Kai-Keen</creatorcontrib><creatorcontrib>Spencer, Jo</creatorcontrib><creatorcontrib>Ciccarelli, Francesca D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gastroenterology (New York, N.Y. 1943)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bortolomeazzi, Michele</au><au>Keddar, Mohamed Reda</au><au>Montorsi, Lucia</au><au>Acha-Sagredo, Amelia</au><au>Benedetti, Lorena</au><au>Temelkovski, Damjan</au><au>Choi, Subin</au><au>Petrov, Nedyalko</au><au>Todd, Katrina</au><au>Wai, Patty</au><au>Kohl, Johannes</au><au>Denner, Tamara</au><au>Nye, Emma</au><au>Goldstone, Robert</au><au>Ward, Sophia</au><au>Wilson, Gareth A.</au><au>Al Bakir, Maise</au><au>Swanton, Charles</au><au>John, Susan</au><au>Miles, James</au><au>Larijani, Banafshe</au><au>Kunene, Victoria</au><au>Fontana, Elisa</au><au>Arkenau, Hendrik-Tobias</au><au>Parker, Peter J.</au><au>Rodriguez-Justo, Manuel</au><au>Shiu, Kai-Keen</au><au>Spencer, Jo</au><au>Ciccarelli, Francesca D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immunogenomics of Colorectal Cancer Response to Checkpoint Blockade: Analysis of the KEYNOTE 177 Trial and Validation Cohorts</atitle><jtitle>Gastroenterology (New York, N.Y. 1943)</jtitle><addtitle>Gastroenterology</addtitle><date>2021-10</date><risdate>2021</risdate><volume>161</volume><issue>4</issue><spage>1179</spage><epage>1193</epage><pages>1179-1193</pages><issn>0016-5085</issn><eissn>1528-0012</eissn><abstract>Colorectal cancer (CRC) shows variable response to immune checkpoint blockade, which can only partially be explained by high tumor mutational burden (TMB). We conducted an integrated study of the cancer tissue and associated tumor microenvironment (TME) from patients treated with pembrolizumab (KEYNOTE 177 clinical trial) or nivolumab to dissect the cellular and molecular determinants of response to anti- programmed cell death 1 (PD1) immunotherapy. We selected multiple regions per tumor showing variable T-cell infiltration for a total of 738 regions from 29 patients, divided into discovery and validation cohorts. We performed multiregional whole-exome and RNA sequencing of the tumor cells and integrated these with T-cell receptor sequencing, high-dimensional imaging mass cytometry, detection of programmed death-ligand 1 (PDL1) interaction in situ, multiplexed immunofluorescence, and computational spatial analysis of the TME. In hypermutated CRCs, response to anti-PD1 immunotherapy was not associated with TMB but with high clonality of immunogenic mutations, clonally expanded T cells, low activation of Wnt signaling, deregulation of the interferon gamma pathway, and active immune escape mechanisms. Responsive hypermutated CRCs were also rich in cytotoxic and proliferating PD1+CD8 T cells interacting with PDL1+ antigen-presenting macrophages. Our study clarified the limits of TMB as a predictor of response of CRC to anti-PD1 immunotherapy. It identified a population of antigen-presenting macrophages interacting with CD8 T cells that consistently segregate with response. We therefore concluded that anti-PD1 agents release the PD1-PDL1 interaction between CD8 T cells and macrophages to promote cytotoxic antitumor activity. [Display omitted] Colorectal cancers responsive to anti-programmed cell death 1 immunotherapy show clonal immunogenic mutations, low Wnt activation, beta-2-microglobulin deregulation, and high infiltration of antigen presenting macrophages interacting with programmed cell death 1-positive cluster of differentiation 8 T cells.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34197832</pmid><doi>10.1053/j.gastro.2021.06.064</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9325-0900</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-5085
ispartof Gastroenterology (New York, N.Y. 1943), 2021-10, Vol.161 (4), p.1179-1193
issn 0016-5085
1528-0012
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8527923
source MEDLINE; Elsevier ScienceDirect Journals Complete; Alma/SFX Local Collection
subjects Anti-PD1 Immunotherapy
Antibodies, Monoclonal, Humanized - adverse effects
Antibodies, Monoclonal, Humanized - therapeutic use
Biomarkers, Tumor - genetics
CD8 T cells
CD8-Positive T-Lymphocytes - drug effects
CD8-Positive T-Lymphocytes - immunology
Clinical Trials as Topic
Colorectal Neoplasms - drug therapy
Colorectal Neoplasms - genetics
Colorectal Neoplasms - immunology
Cytotoxicity, Immunologic - drug effects
Exome Sequencing
Gene Expression Profiling
Humans
Immune Checkpoint Inhibitors - adverse effects
Immune Checkpoint Inhibitors - therapeutic use
Immunogenetic Phenomena
Immunogenetics
Interferon Gamma
Lymphocytes, Tumor-Infiltrating - drug effects
Lymphocytes, Tumor-Infiltrating - immunology
Mutation
Nivolumab - adverse effects
Nivolumab - therapeutic use
Original Research
Predictive Value of Tests
Programmed Cell Death 1 Receptor - antagonists & inhibitors
Reproducibility of Results
RNA-Seq
Time Factors
Transcriptome
Treatment Outcome
Tumor Microenvironment
Tumor Mutational Burden
Tumor-Associated Macrophages - drug effects
Tumor-Associated Macrophages - immunology
Wnt Signaling
title Immunogenomics of Colorectal Cancer Response to Checkpoint Blockade: Analysis of the KEYNOTE 177 Trial and Validation Cohorts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A51%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immunogenomics%20of%20Colorectal%20Cancer%20Response%20to%20Checkpoint%C2%A0Blockade:%20Analysis%20of%20the%20KEYNOTE%20177%20Trial%20and%C2%A0Validation%20Cohorts&rft.jtitle=Gastroenterology%20(New%20York,%20N.Y.%201943)&rft.au=Bortolomeazzi,%20Michele&rft.date=2021-10&rft.volume=161&rft.issue=4&rft.spage=1179&rft.epage=1193&rft.pages=1179-1193&rft.issn=0016-5085&rft.eissn=1528-0012&rft_id=info:doi/10.1053/j.gastro.2021.06.064&rft_dat=%3Cpubmed_cross%3E34197832%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34197832&rft_els_id=S0016508521031784&rfr_iscdi=true