Temperature profile characterization with fluorescence lifetime imaging microscopy in a thermophoretic chip
This study introduces a thermophoretic lab-on-a-chip device to measure the Soret coefficient. We use resistive heating of a microwire on the chip to induce a temperature gradient, which is measured by fluorescence lifetime imaging microscopy (FLIM). To verify the functionality of the device, we used...
Gespeichert in:
Veröffentlicht in: | The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2021-10, Vol.44 (10), p.130-130, Article 130 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 130 |
---|---|
container_issue | 10 |
container_start_page | 130 |
container_title | The European physical journal. E, Soft matter and biological physics |
container_volume | 44 |
creator | Lee, Namkyu Afanasenkau, Dzmitry Rinklin, Philipp Wolfrum, Bernhard Wiegand, Simone |
description | This study introduces a thermophoretic lab-on-a-chip device to measure the Soret coefficient. We use resistive heating of a microwire on the chip to induce a temperature gradient, which is measured by fluorescence lifetime imaging microscopy (FLIM). To verify the functionality of the device, we used dyed polystyrene particles with a diameter of 25 nm. A confocal microscope is utilized to monitor the concentration profile of colloidal particles in the temperature field. Based on the measured temperature and concentration differences, we calculate the corresponding Soret coefficient. The same particles have been recently investigated with thermal diffusion forced Rayleigh scattering (TDFRS) and we find that the obtained Soret coefficients agree with literature results. This chip offers a simple way to study the thermophoretic behavior of biological systems in multicomponent buffer solutions quantitatively, which are difficult to study with optical methods solely relying on the refractive index contrast.
Graphic abstract |
doi_str_mv | 10.1140/epje/s10189-021-00133-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8526468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583475128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-4bbb31c58d7800a546da3da3a025ea8c9a1066569e04e80b5e2b5b399ff2ed823</originalsourceid><addsrcrecordid>eNqFkU1rFTEYhYMotlb_ggbcdDM2nzPJRpDiFxS6qeAuZHLfuZPrzGRMMpX215vprdfWjRBI4H3ewzk5CL2h5B2lgpzBvIOzRAlVuiKMVoRQzqvmCTqmTLNKafn96eEt6BF6kdKOFEoQ_hwdcVHXiih6jH5cwThDtHmJgOcYOj8Adr2N1mWI_tZmHyb8y-ced8MSIiQHkwM8-A6yHwH70W79tMWjdzEkF-Yb7Cdsce4hjmHuy0r2rkj6-SV61tkhwav7-wR9-_Tx6vxLdXH5-ev5h4vKCS1yJdq25dRJtWkUIVaKemN5OZYwCVY5bSmpa1lrIAIUaSWwVrZc665jsFGMn6D3e915aUfYFMM52sHMsXiNNyZYbx5PJt-bbbg2SrJa1KoInN4LxPBzgZTN6EvuYbAThCUZJpUgtJGaF_TtP-guLHEq8VaKi0ZStgo2e2r9oxShO5ihxKyFmrVQsy_UlELNXaGmKZuvH2Y57P1psABqD6QymrYQ_xr4n_ZvcqOzQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583475128</pqid></control><display><type>article</type><title>Temperature profile characterization with fluorescence lifetime imaging microscopy in a thermophoretic chip</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lee, Namkyu ; Afanasenkau, Dzmitry ; Rinklin, Philipp ; Wolfrum, Bernhard ; Wiegand, Simone</creator><creatorcontrib>Lee, Namkyu ; Afanasenkau, Dzmitry ; Rinklin, Philipp ; Wolfrum, Bernhard ; Wiegand, Simone</creatorcontrib><description>This study introduces a thermophoretic lab-on-a-chip device to measure the Soret coefficient. We use resistive heating of a microwire on the chip to induce a temperature gradient, which is measured by fluorescence lifetime imaging microscopy (FLIM). To verify the functionality of the device, we used dyed polystyrene particles with a diameter of 25 nm. A confocal microscope is utilized to monitor the concentration profile of colloidal particles in the temperature field. Based on the measured temperature and concentration differences, we calculate the corresponding Soret coefficient. The same particles have been recently investigated with thermal diffusion forced Rayleigh scattering (TDFRS) and we find that the obtained Soret coefficients agree with literature results. This chip offers a simple way to study the thermophoretic behavior of biological systems in multicomponent buffer solutions quantitatively, which are difficult to study with optical methods solely relying on the refractive index contrast.
Graphic abstract</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/s10189-021-00133-7</identifier><identifier>PMID: 34668081</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biological and Medical Physics ; Biophysics ; Buffer solutions ; Complex Fluids and Microfluidics ; Complex Systems ; Condensed matter physics ; Diameters ; Fluorescence ; Lab-on-a-chip ; Mathematical analysis ; Microscopy ; Nanotechnology ; Optics ; Physics ; Physics and Astronomy ; Polymer Sciences ; Polystyrene resins ; Rayleigh scattering ; Refractivity ; Regular Article – Soft Matter ; Regular – Soft Matter ; Soft and Granular Matter ; Soret coefficient ; Surfaces and Interfaces ; Temperature ; Temperature distribution ; Temperature profiles ; Thermal diffusion ; Thermal non-equilibrium phenomena in fluid mixtures ; Thin Films</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2021-10, Vol.44 (10), p.130-130, Article 130</ispartof><rights>The Author(s) 2021. corrected publication 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021, corrected publication 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-4bbb31c58d7800a546da3da3a025ea8c9a1066569e04e80b5e2b5b399ff2ed823</citedby><cites>FETCH-LOGICAL-c494t-4bbb31c58d7800a546da3da3a025ea8c9a1066569e04e80b5e2b5b399ff2ed823</cites><orcidid>0000-0002-0342-9764 ; 0000-0001-6333-1956 ; 0000-0003-4438-3755 ; 0000-0003-1063-8342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epje/s10189-021-00133-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epje/s10189-021-00133-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34668081$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Namkyu</creatorcontrib><creatorcontrib>Afanasenkau, Dzmitry</creatorcontrib><creatorcontrib>Rinklin, Philipp</creatorcontrib><creatorcontrib>Wolfrum, Bernhard</creatorcontrib><creatorcontrib>Wiegand, Simone</creatorcontrib><title>Temperature profile characterization with fluorescence lifetime imaging microscopy in a thermophoretic chip</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>This study introduces a thermophoretic lab-on-a-chip device to measure the Soret coefficient. We use resistive heating of a microwire on the chip to induce a temperature gradient, which is measured by fluorescence lifetime imaging microscopy (FLIM). To verify the functionality of the device, we used dyed polystyrene particles with a diameter of 25 nm. A confocal microscope is utilized to monitor the concentration profile of colloidal particles in the temperature field. Based on the measured temperature and concentration differences, we calculate the corresponding Soret coefficient. The same particles have been recently investigated with thermal diffusion forced Rayleigh scattering (TDFRS) and we find that the obtained Soret coefficients agree with literature results. This chip offers a simple way to study the thermophoretic behavior of biological systems in multicomponent buffer solutions quantitatively, which are difficult to study with optical methods solely relying on the refractive index contrast.
Graphic abstract</description><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Buffer solutions</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Condensed matter physics</subject><subject>Diameters</subject><subject>Fluorescence</subject><subject>Lab-on-a-chip</subject><subject>Mathematical analysis</subject><subject>Microscopy</subject><subject>Nanotechnology</subject><subject>Optics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer Sciences</subject><subject>Polystyrene resins</subject><subject>Rayleigh scattering</subject><subject>Refractivity</subject><subject>Regular Article – Soft Matter</subject><subject>Regular – Soft Matter</subject><subject>Soft and Granular Matter</subject><subject>Soret coefficient</subject><subject>Surfaces and Interfaces</subject><subject>Temperature</subject><subject>Temperature distribution</subject><subject>Temperature profiles</subject><subject>Thermal diffusion</subject><subject>Thermal non-equilibrium phenomena in fluid mixtures</subject><subject>Thin Films</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU1rFTEYhYMotlb_ggbcdDM2nzPJRpDiFxS6qeAuZHLfuZPrzGRMMpX215vprdfWjRBI4H3ewzk5CL2h5B2lgpzBvIOzRAlVuiKMVoRQzqvmCTqmTLNKafn96eEt6BF6kdKOFEoQ_hwdcVHXiih6jH5cwThDtHmJgOcYOj8Adr2N1mWI_tZmHyb8y-ced8MSIiQHkwM8-A6yHwH70W79tMWjdzEkF-Yb7Cdsce4hjmHuy0r2rkj6-SV61tkhwav7-wR9-_Tx6vxLdXH5-ev5h4vKCS1yJdq25dRJtWkUIVaKemN5OZYwCVY5bSmpa1lrIAIUaSWwVrZc665jsFGMn6D3e915aUfYFMM52sHMsXiNNyZYbx5PJt-bbbg2SrJa1KoInN4LxPBzgZTN6EvuYbAThCUZJpUgtJGaF_TtP-guLHEq8VaKi0ZStgo2e2r9oxShO5ihxKyFmrVQsy_UlELNXaGmKZuvH2Y57P1psABqD6QymrYQ_xr4n_ZvcqOzQA</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Lee, Namkyu</creator><creator>Afanasenkau, Dzmitry</creator><creator>Rinklin, Philipp</creator><creator>Wolfrum, Bernhard</creator><creator>Wiegand, Simone</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0342-9764</orcidid><orcidid>https://orcid.org/0000-0001-6333-1956</orcidid><orcidid>https://orcid.org/0000-0003-4438-3755</orcidid><orcidid>https://orcid.org/0000-0003-1063-8342</orcidid></search><sort><creationdate>20211001</creationdate><title>Temperature profile characterization with fluorescence lifetime imaging microscopy in a thermophoretic chip</title><author>Lee, Namkyu ; Afanasenkau, Dzmitry ; Rinklin, Philipp ; Wolfrum, Bernhard ; Wiegand, Simone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-4bbb31c58d7800a546da3da3a025ea8c9a1066569e04e80b5e2b5b399ff2ed823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Buffer solutions</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Condensed matter physics</topic><topic>Diameters</topic><topic>Fluorescence</topic><topic>Lab-on-a-chip</topic><topic>Mathematical analysis</topic><topic>Microscopy</topic><topic>Nanotechnology</topic><topic>Optics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer Sciences</topic><topic>Polystyrene resins</topic><topic>Rayleigh scattering</topic><topic>Refractivity</topic><topic>Regular Article – Soft Matter</topic><topic>Regular – Soft Matter</topic><topic>Soft and Granular Matter</topic><topic>Soret coefficient</topic><topic>Surfaces and Interfaces</topic><topic>Temperature</topic><topic>Temperature distribution</topic><topic>Temperature profiles</topic><topic>Thermal diffusion</topic><topic>Thermal non-equilibrium phenomena in fluid mixtures</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Namkyu</creatorcontrib><creatorcontrib>Afanasenkau, Dzmitry</creatorcontrib><creatorcontrib>Rinklin, Philipp</creatorcontrib><creatorcontrib>Wolfrum, Bernhard</creatorcontrib><creatorcontrib>Wiegand, Simone</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Namkyu</au><au>Afanasenkau, Dzmitry</au><au>Rinklin, Philipp</au><au>Wolfrum, Bernhard</au><au>Wiegand, Simone</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature profile characterization with fluorescence lifetime imaging microscopy in a thermophoretic chip</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>44</volume><issue>10</issue><spage>130</spage><epage>130</epage><pages>130-130</pages><artnum>130</artnum><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>This study introduces a thermophoretic lab-on-a-chip device to measure the Soret coefficient. We use resistive heating of a microwire on the chip to induce a temperature gradient, which is measured by fluorescence lifetime imaging microscopy (FLIM). To verify the functionality of the device, we used dyed polystyrene particles with a diameter of 25 nm. A confocal microscope is utilized to monitor the concentration profile of colloidal particles in the temperature field. Based on the measured temperature and concentration differences, we calculate the corresponding Soret coefficient. The same particles have been recently investigated with thermal diffusion forced Rayleigh scattering (TDFRS) and we find that the obtained Soret coefficients agree with literature results. This chip offers a simple way to study the thermophoretic behavior of biological systems in multicomponent buffer solutions quantitatively, which are difficult to study with optical methods solely relying on the refractive index contrast.
Graphic abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34668081</pmid><doi>10.1140/epje/s10189-021-00133-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0342-9764</orcidid><orcidid>https://orcid.org/0000-0001-6333-1956</orcidid><orcidid>https://orcid.org/0000-0003-4438-3755</orcidid><orcidid>https://orcid.org/0000-0003-1063-8342</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1292-8941 |
ispartof | The European physical journal. E, Soft matter and biological physics, 2021-10, Vol.44 (10), p.130-130, Article 130 |
issn | 1292-8941 1292-895X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8526468 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Biological and Medical Physics Biophysics Buffer solutions Complex Fluids and Microfluidics Complex Systems Condensed matter physics Diameters Fluorescence Lab-on-a-chip Mathematical analysis Microscopy Nanotechnology Optics Physics Physics and Astronomy Polymer Sciences Polystyrene resins Rayleigh scattering Refractivity Regular Article – Soft Matter Regular – Soft Matter Soft and Granular Matter Soret coefficient Surfaces and Interfaces Temperature Temperature distribution Temperature profiles Thermal diffusion Thermal non-equilibrium phenomena in fluid mixtures Thin Films |
title | Temperature profile characterization with fluorescence lifetime imaging microscopy in a thermophoretic chip |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A17%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20profile%20characterization%20with%20fluorescence%20lifetime%20imaging%20microscopy%20in%20a%20thermophoretic%20chip&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Lee,%20Namkyu&rft.date=2021-10-01&rft.volume=44&rft.issue=10&rft.spage=130&rft.epage=130&rft.pages=130-130&rft.artnum=130&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/s10189-021-00133-7&rft_dat=%3Cproquest_pubme%3E2583475128%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583475128&rft_id=info:pmid/34668081&rfr_iscdi=true |