Temperature profile characterization with fluorescence lifetime imaging microscopy in a thermophoretic chip

This study introduces a thermophoretic lab-on-a-chip device to measure the Soret coefficient. We use resistive heating of a microwire on the chip to induce a temperature gradient, which is measured by fluorescence lifetime imaging microscopy (FLIM). To verify the functionality of the device, we used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2021-10, Vol.44 (10), p.130-130, Article 130
Hauptverfasser: Lee, Namkyu, Afanasenkau, Dzmitry, Rinklin, Philipp, Wolfrum, Bernhard, Wiegand, Simone
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 130
container_issue 10
container_start_page 130
container_title The European physical journal. E, Soft matter and biological physics
container_volume 44
creator Lee, Namkyu
Afanasenkau, Dzmitry
Rinklin, Philipp
Wolfrum, Bernhard
Wiegand, Simone
description This study introduces a thermophoretic lab-on-a-chip device to measure the Soret coefficient. We use resistive heating of a microwire on the chip to induce a temperature gradient, which is measured by fluorescence lifetime imaging microscopy (FLIM). To verify the functionality of the device, we used dyed polystyrene particles with a diameter of 25 nm. A confocal microscope is utilized to monitor the concentration profile of colloidal particles in the temperature field. Based on the measured temperature and concentration differences, we calculate the corresponding Soret coefficient. The same particles have been recently investigated with thermal diffusion forced Rayleigh scattering (TDFRS) and we find that the obtained Soret coefficients agree with literature results. This chip offers a simple way to study the thermophoretic behavior of biological systems in multicomponent buffer solutions quantitatively, which are difficult to study with optical methods solely relying on the refractive index contrast. Graphic abstract
doi_str_mv 10.1140/epje/s10189-021-00133-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8526468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583475128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-4bbb31c58d7800a546da3da3a025ea8c9a1066569e04e80b5e2b5b399ff2ed823</originalsourceid><addsrcrecordid>eNqFkU1rFTEYhYMotlb_ggbcdDM2nzPJRpDiFxS6qeAuZHLfuZPrzGRMMpX215vprdfWjRBI4H3ewzk5CL2h5B2lgpzBvIOzRAlVuiKMVoRQzqvmCTqmTLNKafn96eEt6BF6kdKOFEoQ_hwdcVHXiih6jH5cwThDtHmJgOcYOj8Adr2N1mWI_tZmHyb8y-ced8MSIiQHkwM8-A6yHwH70W79tMWjdzEkF-Yb7Cdsce4hjmHuy0r2rkj6-SV61tkhwav7-wR9-_Tx6vxLdXH5-ev5h4vKCS1yJdq25dRJtWkUIVaKemN5OZYwCVY5bSmpa1lrIAIUaSWwVrZc665jsFGMn6D3e915aUfYFMM52sHMsXiNNyZYbx5PJt-bbbg2SrJa1KoInN4LxPBzgZTN6EvuYbAThCUZJpUgtJGaF_TtP-guLHEq8VaKi0ZStgo2e2r9oxShO5ihxKyFmrVQsy_UlELNXaGmKZuvH2Y57P1psABqD6QymrYQ_xr4n_ZvcqOzQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583475128</pqid></control><display><type>article</type><title>Temperature profile characterization with fluorescence lifetime imaging microscopy in a thermophoretic chip</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lee, Namkyu ; Afanasenkau, Dzmitry ; Rinklin, Philipp ; Wolfrum, Bernhard ; Wiegand, Simone</creator><creatorcontrib>Lee, Namkyu ; Afanasenkau, Dzmitry ; Rinklin, Philipp ; Wolfrum, Bernhard ; Wiegand, Simone</creatorcontrib><description>This study introduces a thermophoretic lab-on-a-chip device to measure the Soret coefficient. We use resistive heating of a microwire on the chip to induce a temperature gradient, which is measured by fluorescence lifetime imaging microscopy (FLIM). To verify the functionality of the device, we used dyed polystyrene particles with a diameter of 25 nm. A confocal microscope is utilized to monitor the concentration profile of colloidal particles in the temperature field. Based on the measured temperature and concentration differences, we calculate the corresponding Soret coefficient. The same particles have been recently investigated with thermal diffusion forced Rayleigh scattering (TDFRS) and we find that the obtained Soret coefficients agree with literature results. This chip offers a simple way to study the thermophoretic behavior of biological systems in multicomponent buffer solutions quantitatively, which are difficult to study with optical methods solely relying on the refractive index contrast. Graphic abstract</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/s10189-021-00133-7</identifier><identifier>PMID: 34668081</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biological and Medical Physics ; Biophysics ; Buffer solutions ; Complex Fluids and Microfluidics ; Complex Systems ; Condensed matter physics ; Diameters ; Fluorescence ; Lab-on-a-chip ; Mathematical analysis ; Microscopy ; Nanotechnology ; Optics ; Physics ; Physics and Astronomy ; Polymer Sciences ; Polystyrene resins ; Rayleigh scattering ; Refractivity ; Regular Article – Soft Matter ; Regular – Soft Matter ; Soft and Granular Matter ; Soret coefficient ; Surfaces and Interfaces ; Temperature ; Temperature distribution ; Temperature profiles ; Thermal diffusion ; Thermal non-equilibrium phenomena in fluid mixtures ; Thin Films</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2021-10, Vol.44 (10), p.130-130, Article 130</ispartof><rights>The Author(s) 2021. corrected publication 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021, corrected publication 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-4bbb31c58d7800a546da3da3a025ea8c9a1066569e04e80b5e2b5b399ff2ed823</citedby><cites>FETCH-LOGICAL-c494t-4bbb31c58d7800a546da3da3a025ea8c9a1066569e04e80b5e2b5b399ff2ed823</cites><orcidid>0000-0002-0342-9764 ; 0000-0001-6333-1956 ; 0000-0003-4438-3755 ; 0000-0003-1063-8342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epje/s10189-021-00133-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epje/s10189-021-00133-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34668081$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Namkyu</creatorcontrib><creatorcontrib>Afanasenkau, Dzmitry</creatorcontrib><creatorcontrib>Rinklin, Philipp</creatorcontrib><creatorcontrib>Wolfrum, Bernhard</creatorcontrib><creatorcontrib>Wiegand, Simone</creatorcontrib><title>Temperature profile characterization with fluorescence lifetime imaging microscopy in a thermophoretic chip</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>This study introduces a thermophoretic lab-on-a-chip device to measure the Soret coefficient. We use resistive heating of a microwire on the chip to induce a temperature gradient, which is measured by fluorescence lifetime imaging microscopy (FLIM). To verify the functionality of the device, we used dyed polystyrene particles with a diameter of 25 nm. A confocal microscope is utilized to monitor the concentration profile of colloidal particles in the temperature field. Based on the measured temperature and concentration differences, we calculate the corresponding Soret coefficient. The same particles have been recently investigated with thermal diffusion forced Rayleigh scattering (TDFRS) and we find that the obtained Soret coefficients agree with literature results. This chip offers a simple way to study the thermophoretic behavior of biological systems in multicomponent buffer solutions quantitatively, which are difficult to study with optical methods solely relying on the refractive index contrast. Graphic abstract</description><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Buffer solutions</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Condensed matter physics</subject><subject>Diameters</subject><subject>Fluorescence</subject><subject>Lab-on-a-chip</subject><subject>Mathematical analysis</subject><subject>Microscopy</subject><subject>Nanotechnology</subject><subject>Optics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer Sciences</subject><subject>Polystyrene resins</subject><subject>Rayleigh scattering</subject><subject>Refractivity</subject><subject>Regular Article – Soft Matter</subject><subject>Regular – Soft Matter</subject><subject>Soft and Granular Matter</subject><subject>Soret coefficient</subject><subject>Surfaces and Interfaces</subject><subject>Temperature</subject><subject>Temperature distribution</subject><subject>Temperature profiles</subject><subject>Thermal diffusion</subject><subject>Thermal non-equilibrium phenomena in fluid mixtures</subject><subject>Thin Films</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU1rFTEYhYMotlb_ggbcdDM2nzPJRpDiFxS6qeAuZHLfuZPrzGRMMpX215vprdfWjRBI4H3ewzk5CL2h5B2lgpzBvIOzRAlVuiKMVoRQzqvmCTqmTLNKafn96eEt6BF6kdKOFEoQ_hwdcVHXiih6jH5cwThDtHmJgOcYOj8Adr2N1mWI_tZmHyb8y-ced8MSIiQHkwM8-A6yHwH70W79tMWjdzEkF-Yb7Cdsce4hjmHuy0r2rkj6-SV61tkhwav7-wR9-_Tx6vxLdXH5-ev5h4vKCS1yJdq25dRJtWkUIVaKemN5OZYwCVY5bSmpa1lrIAIUaSWwVrZc665jsFGMn6D3e915aUfYFMM52sHMsXiNNyZYbx5PJt-bbbg2SrJa1KoInN4LxPBzgZTN6EvuYbAThCUZJpUgtJGaF_TtP-guLHEq8VaKi0ZStgo2e2r9oxShO5ihxKyFmrVQsy_UlELNXaGmKZuvH2Y57P1psABqD6QymrYQ_xr4n_ZvcqOzQA</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Lee, Namkyu</creator><creator>Afanasenkau, Dzmitry</creator><creator>Rinklin, Philipp</creator><creator>Wolfrum, Bernhard</creator><creator>Wiegand, Simone</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0342-9764</orcidid><orcidid>https://orcid.org/0000-0001-6333-1956</orcidid><orcidid>https://orcid.org/0000-0003-4438-3755</orcidid><orcidid>https://orcid.org/0000-0003-1063-8342</orcidid></search><sort><creationdate>20211001</creationdate><title>Temperature profile characterization with fluorescence lifetime imaging microscopy in a thermophoretic chip</title><author>Lee, Namkyu ; Afanasenkau, Dzmitry ; Rinklin, Philipp ; Wolfrum, Bernhard ; Wiegand, Simone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-4bbb31c58d7800a546da3da3a025ea8c9a1066569e04e80b5e2b5b399ff2ed823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Buffer solutions</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Condensed matter physics</topic><topic>Diameters</topic><topic>Fluorescence</topic><topic>Lab-on-a-chip</topic><topic>Mathematical analysis</topic><topic>Microscopy</topic><topic>Nanotechnology</topic><topic>Optics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer Sciences</topic><topic>Polystyrene resins</topic><topic>Rayleigh scattering</topic><topic>Refractivity</topic><topic>Regular Article – Soft Matter</topic><topic>Regular – Soft Matter</topic><topic>Soft and Granular Matter</topic><topic>Soret coefficient</topic><topic>Surfaces and Interfaces</topic><topic>Temperature</topic><topic>Temperature distribution</topic><topic>Temperature profiles</topic><topic>Thermal diffusion</topic><topic>Thermal non-equilibrium phenomena in fluid mixtures</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Namkyu</creatorcontrib><creatorcontrib>Afanasenkau, Dzmitry</creatorcontrib><creatorcontrib>Rinklin, Philipp</creatorcontrib><creatorcontrib>Wolfrum, Bernhard</creatorcontrib><creatorcontrib>Wiegand, Simone</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Namkyu</au><au>Afanasenkau, Dzmitry</au><au>Rinklin, Philipp</au><au>Wolfrum, Bernhard</au><au>Wiegand, Simone</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature profile characterization with fluorescence lifetime imaging microscopy in a thermophoretic chip</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>44</volume><issue>10</issue><spage>130</spage><epage>130</epage><pages>130-130</pages><artnum>130</artnum><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>This study introduces a thermophoretic lab-on-a-chip device to measure the Soret coefficient. We use resistive heating of a microwire on the chip to induce a temperature gradient, which is measured by fluorescence lifetime imaging microscopy (FLIM). To verify the functionality of the device, we used dyed polystyrene particles with a diameter of 25 nm. A confocal microscope is utilized to monitor the concentration profile of colloidal particles in the temperature field. Based on the measured temperature and concentration differences, we calculate the corresponding Soret coefficient. The same particles have been recently investigated with thermal diffusion forced Rayleigh scattering (TDFRS) and we find that the obtained Soret coefficients agree with literature results. This chip offers a simple way to study the thermophoretic behavior of biological systems in multicomponent buffer solutions quantitatively, which are difficult to study with optical methods solely relying on the refractive index contrast. Graphic abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34668081</pmid><doi>10.1140/epje/s10189-021-00133-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0342-9764</orcidid><orcidid>https://orcid.org/0000-0001-6333-1956</orcidid><orcidid>https://orcid.org/0000-0003-4438-3755</orcidid><orcidid>https://orcid.org/0000-0003-1063-8342</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1292-8941
ispartof The European physical journal. E, Soft matter and biological physics, 2021-10, Vol.44 (10), p.130-130, Article 130
issn 1292-8941
1292-895X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8526468
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Biological and Medical Physics
Biophysics
Buffer solutions
Complex Fluids and Microfluidics
Complex Systems
Condensed matter physics
Diameters
Fluorescence
Lab-on-a-chip
Mathematical analysis
Microscopy
Nanotechnology
Optics
Physics
Physics and Astronomy
Polymer Sciences
Polystyrene resins
Rayleigh scattering
Refractivity
Regular Article – Soft Matter
Regular – Soft Matter
Soft and Granular Matter
Soret coefficient
Surfaces and Interfaces
Temperature
Temperature distribution
Temperature profiles
Thermal diffusion
Thermal non-equilibrium phenomena in fluid mixtures
Thin Films
title Temperature profile characterization with fluorescence lifetime imaging microscopy in a thermophoretic chip
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A17%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20profile%20characterization%20with%20fluorescence%20lifetime%20imaging%20microscopy%20in%20a%20thermophoretic%20chip&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Lee,%20Namkyu&rft.date=2021-10-01&rft.volume=44&rft.issue=10&rft.spage=130&rft.epage=130&rft.pages=130-130&rft.artnum=130&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/s10189-021-00133-7&rft_dat=%3Cproquest_pubme%3E2583475128%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583475128&rft_id=info:pmid/34668081&rfr_iscdi=true