Application of iron oxide nanoparticles to control the release of minocycline for the treatment of glioblastoma
The utilization of iron oxide nanoparticles (Fe O NPs) to control minocycline release rates from poly(lactic-co-glycolic acid) scaffolds fabricated from an easy/economical technique is presented. A larger change in temperature and amount of minocycline released was observed for scaffolds with higher...
Gespeichert in:
Veröffentlicht in: | Future medicinal chemistry 2021-11, Vol.13 (21), p.1833-1843 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1843 |
---|---|
container_issue | 21 |
container_start_page | 1833 |
container_title | Future medicinal chemistry |
container_volume | 13 |
creator | Arriaga, Marco A Enriquez, Dean Michael Salinas, Arely D Garcia, Jr, Romeo Trevino De Leo, Carlos Lopez, Silverio A Martirosyan, Karen S Chew, Sue Anne |
description | The utilization of iron oxide nanoparticles (Fe
O
NPs) to control minocycline release rates from poly(lactic-co-glycolic acid) scaffolds fabricated from an easy/economical technique is presented.
A larger change in temperature and amount of minocycline released was observed for scaffolds with higher amounts of Fe
O
NPs, demonstrating that nanoparticle concentration can control heat generation and minocycline release. Temperatures near a polymer’s glass transition temperature can result in the polymer’s chain becoming more mobile and thus increasing drug diffusion out of the scaffold. Elevated temperature and minocycline released from the scaffold can work synergistically to enhance glioblastoma cell death.
This study suggests that Fe
O
NPs are promising materials for controlling minocycline release from polymeric scaffolds by magnetic hyperthermia for the treatment of glioblastoma. |
doi_str_mv | 10.4155/fmc-2021-0098 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8525315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34545754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-192c12a81093e19de4572a830e33e1166b077355e1964da4f4a7cc9fdef1d31a3</originalsourceid><addsrcrecordid>eNp1UMtOxCAUJUbjGHXp1vQHqlBKWzYmk4mvxMSNrglDLzMYCg0wxvl7qaMTXcjmcnIe9-YgdEHwVU0Yu9aDKitckRJj3h2gE9Kypux41R7u_4TP0HmMbzg_WnW8YcdoRmtWs5bVJ8jPx9EaJZPxrvC6MGGaH6aHwknnRxmSURZikXyhvEvB2yKtoQhgQUaYLINxXm2VNQ4K7cMXnQLINIBLk2BljV9aGZMf5Bk60tJGOP-ep-j17vZl8VA-Pd8_LuZPpappm0rCK0Uq2RHMKRDeQz43Q4qBZkyaZonbljKWuabuZa1r2SrFdQ-a9JRIeopudrnjZjlAr_IpQVoxBjPIsBVeGvGXcWYtVv5ddKxilLAcUO4CVPAxBtB7L8FiKl_k8sVUvpjKz_rL3wv36p-qs4DvBHqTNgGiMuAUiB3KDqNygf-EfwLnLJbb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of iron oxide nanoparticles to control the release of minocycline for the treatment of glioblastoma</title><source>MEDLINE</source><source>PubMed Central</source><creator>Arriaga, Marco A ; Enriquez, Dean Michael ; Salinas, Arely D ; Garcia, Jr, Romeo ; Trevino De Leo, Carlos ; Lopez, Silverio A ; Martirosyan, Karen S ; Chew, Sue Anne</creator><creatorcontrib>Arriaga, Marco A ; Enriquez, Dean Michael ; Salinas, Arely D ; Garcia, Jr, Romeo ; Trevino De Leo, Carlos ; Lopez, Silverio A ; Martirosyan, Karen S ; Chew, Sue Anne</creatorcontrib><description>The utilization of iron oxide nanoparticles (Fe
O
NPs) to control minocycline release rates from poly(lactic-co-glycolic acid) scaffolds fabricated from an easy/economical technique is presented.
A larger change in temperature and amount of minocycline released was observed for scaffolds with higher amounts of Fe
O
NPs, demonstrating that nanoparticle concentration can control heat generation and minocycline release. Temperatures near a polymer’s glass transition temperature can result in the polymer’s chain becoming more mobile and thus increasing drug diffusion out of the scaffold. Elevated temperature and minocycline released from the scaffold can work synergistically to enhance glioblastoma cell death.
This study suggests that Fe
O
NPs are promising materials for controlling minocycline release from polymeric scaffolds by magnetic hyperthermia for the treatment of glioblastoma.</description><identifier>ISSN: 1756-8919</identifier><identifier>EISSN: 1756-8927</identifier><identifier>DOI: 10.4155/fmc-2021-0098</identifier><identifier>PMID: 34545754</identifier><language>eng</language><publisher>England: Newlands Press Ltd</publisher><subject>Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; drug delivery ; Drug Liberation ; Drug Screening Assays, Antitumor ; Glioblastoma - drug therapy ; Glioblastoma - pathology ; Humans ; hyperthermia ; iron oxide nanoparticles ; Magnetic Iron Oxide Nanoparticles - chemistry ; minocycline ; Minocycline - chemistry ; Minocycline - pharmacology ; PLGA scaffolds</subject><ispartof>Future medicinal chemistry, 2021-11, Vol.13 (21), p.1833-1843</ispartof><rights>2021 Newlands Press</rights><rights>2021 Newlands Press 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-192c12a81093e19de4572a830e33e1166b077355e1964da4f4a7cc9fdef1d31a3</citedby><cites>FETCH-LOGICAL-c437t-192c12a81093e19de4572a830e33e1166b077355e1964da4f4a7cc9fdef1d31a3</cites><orcidid>0000-0003-3868-560X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8525315/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8525315/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34545754$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arriaga, Marco A</creatorcontrib><creatorcontrib>Enriquez, Dean Michael</creatorcontrib><creatorcontrib>Salinas, Arely D</creatorcontrib><creatorcontrib>Garcia, Jr, Romeo</creatorcontrib><creatorcontrib>Trevino De Leo, Carlos</creatorcontrib><creatorcontrib>Lopez, Silverio A</creatorcontrib><creatorcontrib>Martirosyan, Karen S</creatorcontrib><creatorcontrib>Chew, Sue Anne</creatorcontrib><title>Application of iron oxide nanoparticles to control the release of minocycline for the treatment of glioblastoma</title><title>Future medicinal chemistry</title><addtitle>Future Med Chem</addtitle><description>The utilization of iron oxide nanoparticles (Fe
O
NPs) to control minocycline release rates from poly(lactic-co-glycolic acid) scaffolds fabricated from an easy/economical technique is presented.
A larger change in temperature and amount of minocycline released was observed for scaffolds with higher amounts of Fe
O
NPs, demonstrating that nanoparticle concentration can control heat generation and minocycline release. Temperatures near a polymer’s glass transition temperature can result in the polymer’s chain becoming more mobile and thus increasing drug diffusion out of the scaffold. Elevated temperature and minocycline released from the scaffold can work synergistically to enhance glioblastoma cell death.
This study suggests that Fe
O
NPs are promising materials for controlling minocycline release from polymeric scaffolds by magnetic hyperthermia for the treatment of glioblastoma.</description><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>drug delivery</subject><subject>Drug Liberation</subject><subject>Drug Screening Assays, Antitumor</subject><subject>Glioblastoma - drug therapy</subject><subject>Glioblastoma - pathology</subject><subject>Humans</subject><subject>hyperthermia</subject><subject>iron oxide nanoparticles</subject><subject>Magnetic Iron Oxide Nanoparticles - chemistry</subject><subject>minocycline</subject><subject>Minocycline - chemistry</subject><subject>Minocycline - pharmacology</subject><subject>PLGA scaffolds</subject><issn>1756-8919</issn><issn>1756-8927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1UMtOxCAUJUbjGHXp1vQHqlBKWzYmk4mvxMSNrglDLzMYCg0wxvl7qaMTXcjmcnIe9-YgdEHwVU0Yu9aDKitckRJj3h2gE9Kypux41R7u_4TP0HmMbzg_WnW8YcdoRmtWs5bVJ8jPx9EaJZPxrvC6MGGaH6aHwknnRxmSURZikXyhvEvB2yKtoQhgQUaYLINxXm2VNQ4K7cMXnQLINIBLk2BljV9aGZMf5Bk60tJGOP-ep-j17vZl8VA-Pd8_LuZPpappm0rCK0Uq2RHMKRDeQz43Q4qBZkyaZonbljKWuabuZa1r2SrFdQ-a9JRIeopudrnjZjlAr_IpQVoxBjPIsBVeGvGXcWYtVv5ddKxilLAcUO4CVPAxBtB7L8FiKl_k8sVUvpjKz_rL3wv36p-qs4DvBHqTNgGiMuAUiB3KDqNygf-EfwLnLJbb</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Arriaga, Marco A</creator><creator>Enriquez, Dean Michael</creator><creator>Salinas, Arely D</creator><creator>Garcia, Jr, Romeo</creator><creator>Trevino De Leo, Carlos</creator><creator>Lopez, Silverio A</creator><creator>Martirosyan, Karen S</creator><creator>Chew, Sue Anne</creator><general>Newlands Press Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3868-560X</orcidid></search><sort><creationdate>20211101</creationdate><title>Application of iron oxide nanoparticles to control the release of minocycline for the treatment of glioblastoma</title><author>Arriaga, Marco A ; Enriquez, Dean Michael ; Salinas, Arely D ; Garcia, Jr, Romeo ; Trevino De Leo, Carlos ; Lopez, Silverio A ; Martirosyan, Karen S ; Chew, Sue Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-192c12a81093e19de4572a830e33e1166b077355e1964da4f4a7cc9fdef1d31a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>drug delivery</topic><topic>Drug Liberation</topic><topic>Drug Screening Assays, Antitumor</topic><topic>Glioblastoma - drug therapy</topic><topic>Glioblastoma - pathology</topic><topic>Humans</topic><topic>hyperthermia</topic><topic>iron oxide nanoparticles</topic><topic>Magnetic Iron Oxide Nanoparticles - chemistry</topic><topic>minocycline</topic><topic>Minocycline - chemistry</topic><topic>Minocycline - pharmacology</topic><topic>PLGA scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arriaga, Marco A</creatorcontrib><creatorcontrib>Enriquez, Dean Michael</creatorcontrib><creatorcontrib>Salinas, Arely D</creatorcontrib><creatorcontrib>Garcia, Jr, Romeo</creatorcontrib><creatorcontrib>Trevino De Leo, Carlos</creatorcontrib><creatorcontrib>Lopez, Silverio A</creatorcontrib><creatorcontrib>Martirosyan, Karen S</creatorcontrib><creatorcontrib>Chew, Sue Anne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Future medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arriaga, Marco A</au><au>Enriquez, Dean Michael</au><au>Salinas, Arely D</au><au>Garcia, Jr, Romeo</au><au>Trevino De Leo, Carlos</au><au>Lopez, Silverio A</au><au>Martirosyan, Karen S</au><au>Chew, Sue Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of iron oxide nanoparticles to control the release of minocycline for the treatment of glioblastoma</atitle><jtitle>Future medicinal chemistry</jtitle><addtitle>Future Med Chem</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>13</volume><issue>21</issue><spage>1833</spage><epage>1843</epage><pages>1833-1843</pages><issn>1756-8919</issn><eissn>1756-8927</eissn><abstract>The utilization of iron oxide nanoparticles (Fe
O
NPs) to control minocycline release rates from poly(lactic-co-glycolic acid) scaffolds fabricated from an easy/economical technique is presented.
A larger change in temperature and amount of minocycline released was observed for scaffolds with higher amounts of Fe
O
NPs, demonstrating that nanoparticle concentration can control heat generation and minocycline release. Temperatures near a polymer’s glass transition temperature can result in the polymer’s chain becoming more mobile and thus increasing drug diffusion out of the scaffold. Elevated temperature and minocycline released from the scaffold can work synergistically to enhance glioblastoma cell death.
This study suggests that Fe
O
NPs are promising materials for controlling minocycline release from polymeric scaffolds by magnetic hyperthermia for the treatment of glioblastoma.</abstract><cop>England</cop><pub>Newlands Press Ltd</pub><pmid>34545754</pmid><doi>10.4155/fmc-2021-0098</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3868-560X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1756-8919 |
ispartof | Future medicinal chemistry, 2021-11, Vol.13 (21), p.1833-1843 |
issn | 1756-8919 1756-8927 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8525315 |
source | MEDLINE; PubMed Central |
subjects | Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Cell Line, Tumor Cell Proliferation - drug effects Cell Survival - drug effects drug delivery Drug Liberation Drug Screening Assays, Antitumor Glioblastoma - drug therapy Glioblastoma - pathology Humans hyperthermia iron oxide nanoparticles Magnetic Iron Oxide Nanoparticles - chemistry minocycline Minocycline - chemistry Minocycline - pharmacology PLGA scaffolds |
title | Application of iron oxide nanoparticles to control the release of minocycline for the treatment of glioblastoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20iron%20oxide%20nanoparticles%20to%20control%20the%20release%20of%20minocycline%20for%20the%20treatment%20of%20glioblastoma&rft.jtitle=Future%20medicinal%20chemistry&rft.au=Arriaga,%20Marco%20A&rft.date=2021-11-01&rft.volume=13&rft.issue=21&rft.spage=1833&rft.epage=1843&rft.pages=1833-1843&rft.issn=1756-8919&rft.eissn=1756-8927&rft_id=info:doi/10.4155/fmc-2021-0098&rft_dat=%3Cpubmed_cross%3E34545754%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34545754&rfr_iscdi=true |