Application of iron oxide nanoparticles to control the release of minocycline for the treatment of glioblastoma

The utilization of iron oxide nanoparticles (Fe O NPs) to control minocycline release rates from poly(lactic-co-glycolic acid) scaffolds fabricated from an easy/economical technique is presented. A larger change in temperature and amount of minocycline released was observed for scaffolds with higher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Future medicinal chemistry 2021-11, Vol.13 (21), p.1833-1843
Hauptverfasser: Arriaga, Marco A, Enriquez, Dean Michael, Salinas, Arely D, Garcia, Jr, Romeo, Trevino De Leo, Carlos, Lopez, Silverio A, Martirosyan, Karen S, Chew, Sue Anne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1843
container_issue 21
container_start_page 1833
container_title Future medicinal chemistry
container_volume 13
creator Arriaga, Marco A
Enriquez, Dean Michael
Salinas, Arely D
Garcia, Jr, Romeo
Trevino De Leo, Carlos
Lopez, Silverio A
Martirosyan, Karen S
Chew, Sue Anne
description The utilization of iron oxide nanoparticles (Fe O NPs) to control minocycline release rates from poly(lactic-co-glycolic acid) scaffolds fabricated from an easy/economical technique is presented. A larger change in temperature and amount of minocycline released was observed for scaffolds with higher amounts of Fe O NPs, demonstrating that nanoparticle concentration can control heat generation and minocycline release. Temperatures near a polymer’s glass transition temperature can result in the polymer’s chain becoming more mobile and thus increasing drug diffusion out of the scaffold. Elevated temperature and minocycline released from the scaffold can work synergistically to enhance glioblastoma cell death. This study suggests that Fe O NPs are promising materials for controlling minocycline release from polymeric scaffolds by magnetic hyperthermia for the treatment of glioblastoma.
doi_str_mv 10.4155/fmc-2021-0098
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8525315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34545754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-192c12a81093e19de4572a830e33e1166b077355e1964da4f4a7cc9fdef1d31a3</originalsourceid><addsrcrecordid>eNp1UMtOxCAUJUbjGHXp1vQHqlBKWzYmk4mvxMSNrglDLzMYCg0wxvl7qaMTXcjmcnIe9-YgdEHwVU0Yu9aDKitckRJj3h2gE9Kypux41R7u_4TP0HmMbzg_WnW8YcdoRmtWs5bVJ8jPx9EaJZPxrvC6MGGaH6aHwknnRxmSURZikXyhvEvB2yKtoQhgQUaYLINxXm2VNQ4K7cMXnQLINIBLk2BljV9aGZMf5Bk60tJGOP-ep-j17vZl8VA-Pd8_LuZPpappm0rCK0Uq2RHMKRDeQz43Q4qBZkyaZonbljKWuabuZa1r2SrFdQ-a9JRIeopudrnjZjlAr_IpQVoxBjPIsBVeGvGXcWYtVv5ddKxilLAcUO4CVPAxBtB7L8FiKl_k8sVUvpjKz_rL3wv36p-qs4DvBHqTNgGiMuAUiB3KDqNygf-EfwLnLJbb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of iron oxide nanoparticles to control the release of minocycline for the treatment of glioblastoma</title><source>MEDLINE</source><source>PubMed Central</source><creator>Arriaga, Marco A ; Enriquez, Dean Michael ; Salinas, Arely D ; Garcia, Jr, Romeo ; Trevino De Leo, Carlos ; Lopez, Silverio A ; Martirosyan, Karen S ; Chew, Sue Anne</creator><creatorcontrib>Arriaga, Marco A ; Enriquez, Dean Michael ; Salinas, Arely D ; Garcia, Jr, Romeo ; Trevino De Leo, Carlos ; Lopez, Silverio A ; Martirosyan, Karen S ; Chew, Sue Anne</creatorcontrib><description>The utilization of iron oxide nanoparticles (Fe O NPs) to control minocycline release rates from poly(lactic-co-glycolic acid) scaffolds fabricated from an easy/economical technique is presented. A larger change in temperature and amount of minocycline released was observed for scaffolds with higher amounts of Fe O NPs, demonstrating that nanoparticle concentration can control heat generation and minocycline release. Temperatures near a polymer’s glass transition temperature can result in the polymer’s chain becoming more mobile and thus increasing drug diffusion out of the scaffold. Elevated temperature and minocycline released from the scaffold can work synergistically to enhance glioblastoma cell death. This study suggests that Fe O NPs are promising materials for controlling minocycline release from polymeric scaffolds by magnetic hyperthermia for the treatment of glioblastoma.</description><identifier>ISSN: 1756-8919</identifier><identifier>EISSN: 1756-8927</identifier><identifier>DOI: 10.4155/fmc-2021-0098</identifier><identifier>PMID: 34545754</identifier><language>eng</language><publisher>England: Newlands Press Ltd</publisher><subject>Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; drug delivery ; Drug Liberation ; Drug Screening Assays, Antitumor ; Glioblastoma - drug therapy ; Glioblastoma - pathology ; Humans ; hyperthermia ; iron oxide nanoparticles ; Magnetic Iron Oxide Nanoparticles - chemistry ; minocycline ; Minocycline - chemistry ; Minocycline - pharmacology ; PLGA scaffolds</subject><ispartof>Future medicinal chemistry, 2021-11, Vol.13 (21), p.1833-1843</ispartof><rights>2021 Newlands Press</rights><rights>2021 Newlands Press 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-192c12a81093e19de4572a830e33e1166b077355e1964da4f4a7cc9fdef1d31a3</citedby><cites>FETCH-LOGICAL-c437t-192c12a81093e19de4572a830e33e1166b077355e1964da4f4a7cc9fdef1d31a3</cites><orcidid>0000-0003-3868-560X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8525315/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8525315/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34545754$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arriaga, Marco A</creatorcontrib><creatorcontrib>Enriquez, Dean Michael</creatorcontrib><creatorcontrib>Salinas, Arely D</creatorcontrib><creatorcontrib>Garcia, Jr, Romeo</creatorcontrib><creatorcontrib>Trevino De Leo, Carlos</creatorcontrib><creatorcontrib>Lopez, Silverio A</creatorcontrib><creatorcontrib>Martirosyan, Karen S</creatorcontrib><creatorcontrib>Chew, Sue Anne</creatorcontrib><title>Application of iron oxide nanoparticles to control the release of minocycline for the treatment of glioblastoma</title><title>Future medicinal chemistry</title><addtitle>Future Med Chem</addtitle><description>The utilization of iron oxide nanoparticles (Fe O NPs) to control minocycline release rates from poly(lactic-co-glycolic acid) scaffolds fabricated from an easy/economical technique is presented. A larger change in temperature and amount of minocycline released was observed for scaffolds with higher amounts of Fe O NPs, demonstrating that nanoparticle concentration can control heat generation and minocycline release. Temperatures near a polymer’s glass transition temperature can result in the polymer’s chain becoming more mobile and thus increasing drug diffusion out of the scaffold. Elevated temperature and minocycline released from the scaffold can work synergistically to enhance glioblastoma cell death. This study suggests that Fe O NPs are promising materials for controlling minocycline release from polymeric scaffolds by magnetic hyperthermia for the treatment of glioblastoma.</description><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>drug delivery</subject><subject>Drug Liberation</subject><subject>Drug Screening Assays, Antitumor</subject><subject>Glioblastoma - drug therapy</subject><subject>Glioblastoma - pathology</subject><subject>Humans</subject><subject>hyperthermia</subject><subject>iron oxide nanoparticles</subject><subject>Magnetic Iron Oxide Nanoparticles - chemistry</subject><subject>minocycline</subject><subject>Minocycline - chemistry</subject><subject>Minocycline - pharmacology</subject><subject>PLGA scaffolds</subject><issn>1756-8919</issn><issn>1756-8927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1UMtOxCAUJUbjGHXp1vQHqlBKWzYmk4mvxMSNrglDLzMYCg0wxvl7qaMTXcjmcnIe9-YgdEHwVU0Yu9aDKitckRJj3h2gE9Kypux41R7u_4TP0HmMbzg_WnW8YcdoRmtWs5bVJ8jPx9EaJZPxrvC6MGGaH6aHwknnRxmSURZikXyhvEvB2yKtoQhgQUaYLINxXm2VNQ4K7cMXnQLINIBLk2BljV9aGZMf5Bk60tJGOP-ep-j17vZl8VA-Pd8_LuZPpappm0rCK0Uq2RHMKRDeQz43Q4qBZkyaZonbljKWuabuZa1r2SrFdQ-a9JRIeopudrnjZjlAr_IpQVoxBjPIsBVeGvGXcWYtVv5ddKxilLAcUO4CVPAxBtB7L8FiKl_k8sVUvpjKz_rL3wv36p-qs4DvBHqTNgGiMuAUiB3KDqNygf-EfwLnLJbb</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Arriaga, Marco A</creator><creator>Enriquez, Dean Michael</creator><creator>Salinas, Arely D</creator><creator>Garcia, Jr, Romeo</creator><creator>Trevino De Leo, Carlos</creator><creator>Lopez, Silverio A</creator><creator>Martirosyan, Karen S</creator><creator>Chew, Sue Anne</creator><general>Newlands Press Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3868-560X</orcidid></search><sort><creationdate>20211101</creationdate><title>Application of iron oxide nanoparticles to control the release of minocycline for the treatment of glioblastoma</title><author>Arriaga, Marco A ; Enriquez, Dean Michael ; Salinas, Arely D ; Garcia, Jr, Romeo ; Trevino De Leo, Carlos ; Lopez, Silverio A ; Martirosyan, Karen S ; Chew, Sue Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-192c12a81093e19de4572a830e33e1166b077355e1964da4f4a7cc9fdef1d31a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>drug delivery</topic><topic>Drug Liberation</topic><topic>Drug Screening Assays, Antitumor</topic><topic>Glioblastoma - drug therapy</topic><topic>Glioblastoma - pathology</topic><topic>Humans</topic><topic>hyperthermia</topic><topic>iron oxide nanoparticles</topic><topic>Magnetic Iron Oxide Nanoparticles - chemistry</topic><topic>minocycline</topic><topic>Minocycline - chemistry</topic><topic>Minocycline - pharmacology</topic><topic>PLGA scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arriaga, Marco A</creatorcontrib><creatorcontrib>Enriquez, Dean Michael</creatorcontrib><creatorcontrib>Salinas, Arely D</creatorcontrib><creatorcontrib>Garcia, Jr, Romeo</creatorcontrib><creatorcontrib>Trevino De Leo, Carlos</creatorcontrib><creatorcontrib>Lopez, Silverio A</creatorcontrib><creatorcontrib>Martirosyan, Karen S</creatorcontrib><creatorcontrib>Chew, Sue Anne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Future medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arriaga, Marco A</au><au>Enriquez, Dean Michael</au><au>Salinas, Arely D</au><au>Garcia, Jr, Romeo</au><au>Trevino De Leo, Carlos</au><au>Lopez, Silverio A</au><au>Martirosyan, Karen S</au><au>Chew, Sue Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of iron oxide nanoparticles to control the release of minocycline for the treatment of glioblastoma</atitle><jtitle>Future medicinal chemistry</jtitle><addtitle>Future Med Chem</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>13</volume><issue>21</issue><spage>1833</spage><epage>1843</epage><pages>1833-1843</pages><issn>1756-8919</issn><eissn>1756-8927</eissn><abstract>The utilization of iron oxide nanoparticles (Fe O NPs) to control minocycline release rates from poly(lactic-co-glycolic acid) scaffolds fabricated from an easy/economical technique is presented. A larger change in temperature and amount of minocycline released was observed for scaffolds with higher amounts of Fe O NPs, demonstrating that nanoparticle concentration can control heat generation and minocycline release. Temperatures near a polymer’s glass transition temperature can result in the polymer’s chain becoming more mobile and thus increasing drug diffusion out of the scaffold. Elevated temperature and minocycline released from the scaffold can work synergistically to enhance glioblastoma cell death. This study suggests that Fe O NPs are promising materials for controlling minocycline release from polymeric scaffolds by magnetic hyperthermia for the treatment of glioblastoma.</abstract><cop>England</cop><pub>Newlands Press Ltd</pub><pmid>34545754</pmid><doi>10.4155/fmc-2021-0098</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3868-560X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1756-8919
ispartof Future medicinal chemistry, 2021-11, Vol.13 (21), p.1833-1843
issn 1756-8919
1756-8927
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8525315
source MEDLINE; PubMed Central
subjects Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
Cell Line, Tumor
Cell Proliferation - drug effects
Cell Survival - drug effects
drug delivery
Drug Liberation
Drug Screening Assays, Antitumor
Glioblastoma - drug therapy
Glioblastoma - pathology
Humans
hyperthermia
iron oxide nanoparticles
Magnetic Iron Oxide Nanoparticles - chemistry
minocycline
Minocycline - chemistry
Minocycline - pharmacology
PLGA scaffolds
title Application of iron oxide nanoparticles to control the release of minocycline for the treatment of glioblastoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20iron%20oxide%20nanoparticles%20to%20control%20the%20release%20of%20minocycline%20for%20the%20treatment%20of%20glioblastoma&rft.jtitle=Future%20medicinal%20chemistry&rft.au=Arriaga,%20Marco%20A&rft.date=2021-11-01&rft.volume=13&rft.issue=21&rft.spage=1833&rft.epage=1843&rft.pages=1833-1843&rft.issn=1756-8919&rft.eissn=1756-8927&rft_id=info:doi/10.4155/fmc-2021-0098&rft_dat=%3Cpubmed_cross%3E34545754%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34545754&rfr_iscdi=true