Molecular Signatures of Idiopathic Pulmonary Fibrosis

Molecular patterns and pathways in idiopathic pulmonary fibrosis (IPF) have been extensively investigated, but few studies have assimilated multiomic platforms to provide an integrative understanding of molecular patterns that are relevant in IPF. Herein, we combine the coding and noncoding transcri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of respiratory cell and molecular biology 2021-10, Vol.65 (4), p.430-441
Hauptverfasser: Konigsberg, Iain R, Borie, Raphael, Walts, Avram D, Cardwell, Jonathan, Rojas, Mauricio, Metzger, Fabian, Hauck, Stefanie M, Fingerlin, Tasha E, Yang, Ivana V, Schwartz, David A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 441
container_issue 4
container_start_page 430
container_title American journal of respiratory cell and molecular biology
container_volume 65
creator Konigsberg, Iain R
Borie, Raphael
Walts, Avram D
Cardwell, Jonathan
Rojas, Mauricio
Metzger, Fabian
Hauck, Stefanie M
Fingerlin, Tasha E
Yang, Ivana V
Schwartz, David A
description Molecular patterns and pathways in idiopathic pulmonary fibrosis (IPF) have been extensively investigated, but few studies have assimilated multiomic platforms to provide an integrative understanding of molecular patterns that are relevant in IPF. Herein, we combine the coding and noncoding transcriptomes, DNA methylomes, and proteomes from IPF and healthy lung tissue to identify molecules and pathways associated with this disease. RNA sequencing, Illumina MethylationEPIC array, and liquid chromatography-mass spectrometry proteomic data were collected on lung tissue from 24 subjects with IPF and 14 control subjects. Significant differential features were identified by using linear models adjusting for age and sex, inflation, and bias when appropriate. Data Integration Analysis for Biomarker Discovery Using a Latent Component Method for Omics Studies was used for integrative multiomic analysis. We identified 4,643 differentially expressed transcripts aligning to 3,439 genes, 998 differentially abundant proteins, 2,500 differentially methylated regions, and 1,269 differentially expressed long noncoding RNAs (lncRNAs) that were significant after correcting for multiple tests (false discovery rate < 0.05). Unsupervised hierarchical clustering using 20 coding mRNA, protein, methylation, and lncRNA features with the highest loadings on the top latent variable from the four data sets demonstrates perfect separation of IPF and control lungs. Our analysis confirmed previously validated molecules and pathways known to be dysregulated in disease and implicated novel molecular features as potential drivers and modifiers of disease. For example, 4 proteins, 18 differentially methylated regions, and 10 lncRNAs were found to have strong correlations (| | > 0.8) with MMP7 (matrix metalloproteinase 7). Therefore, by using a system biology approach, we have identified novel molecular relationships in IPF.
doi_str_mv 10.1165/rcmb.2020-0546OC
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8525208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579782115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-aca932093ab5d2967d3972c5845db9e53d73382d00b6fcb9e549ad972fb19cf13</originalsourceid><addsrcrecordid>eNpVkF1LwzAUhoMobk7vvZKC1535bJMbQYbTwWSCeh3SNN0y2mYmreC_N2Vz6NU5nI_3vOcB4BrBKUIZu_O6KaYYYphCRrPV7ASMESMspYKL05hDSlPEqBiBixC2ECLMEToHI0Ih4ZnIx4C9uNrovlY-ebPrVnW9NyFxVbIordupbmN18trXjWuV_07mtvAu2HAJzipVB3N1iBPwMX98nz2ny9XTYvawTDXNUZcqrQTBUBBVsBKLLC-JyLFmnLKyEIaRMieE4xLCIqv0UKFClXGkKpDQFSITcL_X3fVFY0pt2s6rWu68baId6ZSV_zut3ci1-5KcYYYhjwK3BwHvPnsTOrl1vW-jZ4lZLnKOUQQ2AXA_peN3wZvqeAFBOYCWA2g5gJZ70HHl5q-z48IvWfIDfUZ6uw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579782115</pqid></control><display><type>article</type><title>Molecular Signatures of Idiopathic Pulmonary Fibrosis</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Konigsberg, Iain R ; Borie, Raphael ; Walts, Avram D ; Cardwell, Jonathan ; Rojas, Mauricio ; Metzger, Fabian ; Hauck, Stefanie M ; Fingerlin, Tasha E ; Yang, Ivana V ; Schwartz, David A</creator><creatorcontrib>Konigsberg, Iain R ; Borie, Raphael ; Walts, Avram D ; Cardwell, Jonathan ; Rojas, Mauricio ; Metzger, Fabian ; Hauck, Stefanie M ; Fingerlin, Tasha E ; Yang, Ivana V ; Schwartz, David A</creatorcontrib><description>Molecular patterns and pathways in idiopathic pulmonary fibrosis (IPF) have been extensively investigated, but few studies have assimilated multiomic platforms to provide an integrative understanding of molecular patterns that are relevant in IPF. Herein, we combine the coding and noncoding transcriptomes, DNA methylomes, and proteomes from IPF and healthy lung tissue to identify molecules and pathways associated with this disease. RNA sequencing, Illumina MethylationEPIC array, and liquid chromatography-mass spectrometry proteomic data were collected on lung tissue from 24 subjects with IPF and 14 control subjects. Significant differential features were identified by using linear models adjusting for age and sex, inflation, and bias when appropriate. Data Integration Analysis for Biomarker Discovery Using a Latent Component Method for Omics Studies was used for integrative multiomic analysis. We identified 4,643 differentially expressed transcripts aligning to 3,439 genes, 998 differentially abundant proteins, 2,500 differentially methylated regions, and 1,269 differentially expressed long noncoding RNAs (lncRNAs) that were significant after correcting for multiple tests (false discovery rate &lt; 0.05). Unsupervised hierarchical clustering using 20 coding mRNA, protein, methylation, and lncRNA features with the highest loadings on the top latent variable from the four data sets demonstrates perfect separation of IPF and control lungs. Our analysis confirmed previously validated molecules and pathways known to be dysregulated in disease and implicated novel molecular features as potential drivers and modifiers of disease. For example, 4 proteins, 18 differentially methylated regions, and 10 lncRNAs were found to have strong correlations (| | &gt; 0.8) with MMP7 (matrix metalloproteinase 7). Therefore, by using a system biology approach, we have identified novel molecular relationships in IPF.</description><identifier>ISSN: 1044-1549</identifier><identifier>EISSN: 1535-4989</identifier><identifier>DOI: 10.1165/rcmb.2020-0546OC</identifier><identifier>PMID: 34038697</identifier><language>eng</language><publisher>United States: American Thoracic Society</publisher><subject>Aged ; Biomarkers ; Case-Control Studies ; Deoxyribonucleic acid ; DNA ; Female ; Fibrosis ; Gene Expression Profiling - methods ; Humans ; Idiopathic Pulmonary Fibrosis - metabolism ; Liquid chromatography ; Lung - metabolism ; Lung diseases ; Male ; Mass spectrometry ; Mass spectroscopy ; Matrilysin ; Matrix metalloproteinase ; Matrix Metalloproteinase 7 - metabolism ; Metalloproteinase ; Middle Aged ; Original Research ; Proteins ; Proteomes ; Proteomics ; Pulmonary fibrosis ; RNA, Long Noncoding - genetics ; RNA, Messenger - metabolism ; Studies ; Transcriptome - physiology ; Transcriptomes</subject><ispartof>American journal of respiratory cell and molecular biology, 2021-10, Vol.65 (4), p.430-441</ispartof><rights>Copyright American Thoracic Society Oct 2021</rights><rights>Copyright © 2021 by the American Thoracic Society 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-aca932093ab5d2967d3972c5845db9e53d73382d00b6fcb9e549ad972fb19cf13</citedby><cites>FETCH-LOGICAL-c471t-aca932093ab5d2967d3972c5845db9e53d73382d00b6fcb9e549ad972fb19cf13</cites><orcidid>0000-0002-9906-0024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34038697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Konigsberg, Iain R</creatorcontrib><creatorcontrib>Borie, Raphael</creatorcontrib><creatorcontrib>Walts, Avram D</creatorcontrib><creatorcontrib>Cardwell, Jonathan</creatorcontrib><creatorcontrib>Rojas, Mauricio</creatorcontrib><creatorcontrib>Metzger, Fabian</creatorcontrib><creatorcontrib>Hauck, Stefanie M</creatorcontrib><creatorcontrib>Fingerlin, Tasha E</creatorcontrib><creatorcontrib>Yang, Ivana V</creatorcontrib><creatorcontrib>Schwartz, David A</creatorcontrib><title>Molecular Signatures of Idiopathic Pulmonary Fibrosis</title><title>American journal of respiratory cell and molecular biology</title><addtitle>Am J Respir Cell Mol Biol</addtitle><description>Molecular patterns and pathways in idiopathic pulmonary fibrosis (IPF) have been extensively investigated, but few studies have assimilated multiomic platforms to provide an integrative understanding of molecular patterns that are relevant in IPF. Herein, we combine the coding and noncoding transcriptomes, DNA methylomes, and proteomes from IPF and healthy lung tissue to identify molecules and pathways associated with this disease. RNA sequencing, Illumina MethylationEPIC array, and liquid chromatography-mass spectrometry proteomic data were collected on lung tissue from 24 subjects with IPF and 14 control subjects. Significant differential features were identified by using linear models adjusting for age and sex, inflation, and bias when appropriate. Data Integration Analysis for Biomarker Discovery Using a Latent Component Method for Omics Studies was used for integrative multiomic analysis. We identified 4,643 differentially expressed transcripts aligning to 3,439 genes, 998 differentially abundant proteins, 2,500 differentially methylated regions, and 1,269 differentially expressed long noncoding RNAs (lncRNAs) that were significant after correcting for multiple tests (false discovery rate &lt; 0.05). Unsupervised hierarchical clustering using 20 coding mRNA, protein, methylation, and lncRNA features with the highest loadings on the top latent variable from the four data sets demonstrates perfect separation of IPF and control lungs. Our analysis confirmed previously validated molecules and pathways known to be dysregulated in disease and implicated novel molecular features as potential drivers and modifiers of disease. For example, 4 proteins, 18 differentially methylated regions, and 10 lncRNAs were found to have strong correlations (| | &gt; 0.8) with MMP7 (matrix metalloproteinase 7). Therefore, by using a system biology approach, we have identified novel molecular relationships in IPF.</description><subject>Aged</subject><subject>Biomarkers</subject><subject>Case-Control Studies</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Female</subject><subject>Fibrosis</subject><subject>Gene Expression Profiling - methods</subject><subject>Humans</subject><subject>Idiopathic Pulmonary Fibrosis - metabolism</subject><subject>Liquid chromatography</subject><subject>Lung - metabolism</subject><subject>Lung diseases</subject><subject>Male</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Matrilysin</subject><subject>Matrix metalloproteinase</subject><subject>Matrix Metalloproteinase 7 - metabolism</subject><subject>Metalloproteinase</subject><subject>Middle Aged</subject><subject>Original Research</subject><subject>Proteins</subject><subject>Proteomes</subject><subject>Proteomics</subject><subject>Pulmonary fibrosis</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Studies</subject><subject>Transcriptome - physiology</subject><subject>Transcriptomes</subject><issn>1044-1549</issn><issn>1535-4989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkF1LwzAUhoMobk7vvZKC1535bJMbQYbTwWSCeh3SNN0y2mYmreC_N2Vz6NU5nI_3vOcB4BrBKUIZu_O6KaYYYphCRrPV7ASMESMspYKL05hDSlPEqBiBixC2ECLMEToHI0Ih4ZnIx4C9uNrovlY-ebPrVnW9NyFxVbIordupbmN18trXjWuV_07mtvAu2HAJzipVB3N1iBPwMX98nz2ny9XTYvawTDXNUZcqrQTBUBBVsBKLLC-JyLFmnLKyEIaRMieE4xLCIqv0UKFClXGkKpDQFSITcL_X3fVFY0pt2s6rWu68baId6ZSV_zut3ci1-5KcYYYhjwK3BwHvPnsTOrl1vW-jZ4lZLnKOUQQ2AXA_peN3wZvqeAFBOYCWA2g5gJZ70HHl5q-z48IvWfIDfUZ6uw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Konigsberg, Iain R</creator><creator>Borie, Raphael</creator><creator>Walts, Avram D</creator><creator>Cardwell, Jonathan</creator><creator>Rojas, Mauricio</creator><creator>Metzger, Fabian</creator><creator>Hauck, Stefanie M</creator><creator>Fingerlin, Tasha E</creator><creator>Yang, Ivana V</creator><creator>Schwartz, David A</creator><general>American Thoracic Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>H94</scope><scope>K9.</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9906-0024</orcidid></search><sort><creationdate>20211001</creationdate><title>Molecular Signatures of Idiopathic Pulmonary Fibrosis</title><author>Konigsberg, Iain R ; Borie, Raphael ; Walts, Avram D ; Cardwell, Jonathan ; Rojas, Mauricio ; Metzger, Fabian ; Hauck, Stefanie M ; Fingerlin, Tasha E ; Yang, Ivana V ; Schwartz, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-aca932093ab5d2967d3972c5845db9e53d73382d00b6fcb9e549ad972fb19cf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aged</topic><topic>Biomarkers</topic><topic>Case-Control Studies</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Female</topic><topic>Fibrosis</topic><topic>Gene Expression Profiling - methods</topic><topic>Humans</topic><topic>Idiopathic Pulmonary Fibrosis - metabolism</topic><topic>Liquid chromatography</topic><topic>Lung - metabolism</topic><topic>Lung diseases</topic><topic>Male</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Matrilysin</topic><topic>Matrix metalloproteinase</topic><topic>Matrix Metalloproteinase 7 - metabolism</topic><topic>Metalloproteinase</topic><topic>Middle Aged</topic><topic>Original Research</topic><topic>Proteins</topic><topic>Proteomes</topic><topic>Proteomics</topic><topic>Pulmonary fibrosis</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Studies</topic><topic>Transcriptome - physiology</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konigsberg, Iain R</creatorcontrib><creatorcontrib>Borie, Raphael</creatorcontrib><creatorcontrib>Walts, Avram D</creatorcontrib><creatorcontrib>Cardwell, Jonathan</creatorcontrib><creatorcontrib>Rojas, Mauricio</creatorcontrib><creatorcontrib>Metzger, Fabian</creatorcontrib><creatorcontrib>Hauck, Stefanie M</creatorcontrib><creatorcontrib>Fingerlin, Tasha E</creatorcontrib><creatorcontrib>Yang, Ivana V</creatorcontrib><creatorcontrib>Schwartz, David A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of respiratory cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konigsberg, Iain R</au><au>Borie, Raphael</au><au>Walts, Avram D</au><au>Cardwell, Jonathan</au><au>Rojas, Mauricio</au><au>Metzger, Fabian</au><au>Hauck, Stefanie M</au><au>Fingerlin, Tasha E</au><au>Yang, Ivana V</au><au>Schwartz, David A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Signatures of Idiopathic Pulmonary Fibrosis</atitle><jtitle>American journal of respiratory cell and molecular biology</jtitle><addtitle>Am J Respir Cell Mol Biol</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>65</volume><issue>4</issue><spage>430</spage><epage>441</epage><pages>430-441</pages><issn>1044-1549</issn><eissn>1535-4989</eissn><abstract>Molecular patterns and pathways in idiopathic pulmonary fibrosis (IPF) have been extensively investigated, but few studies have assimilated multiomic platforms to provide an integrative understanding of molecular patterns that are relevant in IPF. Herein, we combine the coding and noncoding transcriptomes, DNA methylomes, and proteomes from IPF and healthy lung tissue to identify molecules and pathways associated with this disease. RNA sequencing, Illumina MethylationEPIC array, and liquid chromatography-mass spectrometry proteomic data were collected on lung tissue from 24 subjects with IPF and 14 control subjects. Significant differential features were identified by using linear models adjusting for age and sex, inflation, and bias when appropriate. Data Integration Analysis for Biomarker Discovery Using a Latent Component Method for Omics Studies was used for integrative multiomic analysis. We identified 4,643 differentially expressed transcripts aligning to 3,439 genes, 998 differentially abundant proteins, 2,500 differentially methylated regions, and 1,269 differentially expressed long noncoding RNAs (lncRNAs) that were significant after correcting for multiple tests (false discovery rate &lt; 0.05). Unsupervised hierarchical clustering using 20 coding mRNA, protein, methylation, and lncRNA features with the highest loadings on the top latent variable from the four data sets demonstrates perfect separation of IPF and control lungs. Our analysis confirmed previously validated molecules and pathways known to be dysregulated in disease and implicated novel molecular features as potential drivers and modifiers of disease. For example, 4 proteins, 18 differentially methylated regions, and 10 lncRNAs were found to have strong correlations (| | &gt; 0.8) with MMP7 (matrix metalloproteinase 7). Therefore, by using a system biology approach, we have identified novel molecular relationships in IPF.</abstract><cop>United States</cop><pub>American Thoracic Society</pub><pmid>34038697</pmid><doi>10.1165/rcmb.2020-0546OC</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9906-0024</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1044-1549
ispartof American journal of respiratory cell and molecular biology, 2021-10, Vol.65 (4), p.430-441
issn 1044-1549
1535-4989
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8525208
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Aged
Biomarkers
Case-Control Studies
Deoxyribonucleic acid
DNA
Female
Fibrosis
Gene Expression Profiling - methods
Humans
Idiopathic Pulmonary Fibrosis - metabolism
Liquid chromatography
Lung - metabolism
Lung diseases
Male
Mass spectrometry
Mass spectroscopy
Matrilysin
Matrix metalloproteinase
Matrix Metalloproteinase 7 - metabolism
Metalloproteinase
Middle Aged
Original Research
Proteins
Proteomes
Proteomics
Pulmonary fibrosis
RNA, Long Noncoding - genetics
RNA, Messenger - metabolism
Studies
Transcriptome - physiology
Transcriptomes
title Molecular Signatures of Idiopathic Pulmonary Fibrosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A40%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Signatures%20of%20Idiopathic%20Pulmonary%20Fibrosis&rft.jtitle=American%20journal%20of%20respiratory%20cell%20and%20molecular%20biology&rft.au=Konigsberg,%20Iain%20R&rft.date=2021-10-01&rft.volume=65&rft.issue=4&rft.spage=430&rft.epage=441&rft.pages=430-441&rft.issn=1044-1549&rft.eissn=1535-4989&rft_id=info:doi/10.1165/rcmb.2020-0546OC&rft_dat=%3Cproquest_pubme%3E2579782115%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579782115&rft_id=info:pmid/34038697&rfr_iscdi=true