COVID-19: Optimal Design of Serosurveys for Disease Burden Estimation
We provide a methodology by which an epidemiologist may arrive at an optimal design for a survey whose goal is to estimate the disease burden in a population. For serosurveys with a given budget of C rupees, a specified set of tests with costs, sensitivities, and specificities, we show the existence...
Gespeichert in:
Veröffentlicht in: | Sankhyā. Series B (2008) 2022-11, Vol.84 (2), p.472-494 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 494 |
---|---|
container_issue | 2 |
container_start_page | 472 |
container_title | Sankhyā. Series B (2008) |
container_volume | 84 |
creator | Athreya, Siva Babu, Giridhara R. Iyer, Aniruddha S., Mohammed Minhaas B. Rathod, Nihesh Shriram, Sharad Sundaresan, Rajesh Vaidhiyan, Nidhin Koshy Yasodharan, Sarath |
description | We provide a methodology by which an epidemiologist may arrive at an optimal design for a survey whose goal is to estimate the disease burden in a population. For serosurveys with a given budget of
C
rupees, a specified set of tests with costs, sensitivities, and specificities, we show the existence of optimal designs in four different contexts, including the well known c-optimal design. Usefulness of the results are illustrated via numerical examples. Our results are applicable to a wide range of epidemiological surveys under the assumptions that the estimate’s Fisher-information matrix satisfies a uniform positive definite criterion. |
doi_str_mv | 10.1007/s13571-021-00267-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8524406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585904673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-a3e0c9bbb100e80af62bdf92f62f4530f8efb270f7d78790dd7582eb2a29e1d53</originalsourceid><addsrcrecordid>eNp9UV1PwjAUbYxGCPIHfNqjL9OuXdfWBxMFVBISHvx4bbrtFkfGiu0G4d9bhJD4YpPmNrnnnNt7DkLXCb5NMOZ3PqGMJzEm4WKS8Xh7hvpY8iwWVKbnp7fIemjo_RKHwwSlVF6iHk0zidMs6aPJaP45HceJvI_m67Za6Toag68WTWRN9AbO-s5tYOcjY100rjxoD9FT50pooonfE9rKNlfowujaw_BYB-jjefI-eo1n85fp6HEWFymhbawp4ELmeR42AIG1yUheGklCNSmj2AgwOeHY8JILLnFZciYI5EQTCUnJ6AA9HHTXXb6CsoCmdbpWaxf-4XbK6kr97TTVl1rYjRKMpCnOgsDNUcDZ7w58q1aVL6CudQO284owwfbOcBqg5AAtggnegTmNSbDaR6AOEagQgfqNQG0DiR5IPoCbBTi1tJ1rgif_sX4AgJSIew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585904673</pqid></control><display><type>article</type><title>COVID-19: Optimal Design of Serosurveys for Disease Burden Estimation</title><source>Springer Nature - Complete Springer Journals</source><creator>Athreya, Siva ; Babu, Giridhara R. ; Iyer, Aniruddha ; S., Mohammed Minhaas B. ; Rathod, Nihesh ; Shriram, Sharad ; Sundaresan, Rajesh ; Vaidhiyan, Nidhin Koshy ; Yasodharan, Sarath</creator><creatorcontrib>Athreya, Siva ; Babu, Giridhara R. ; Iyer, Aniruddha ; S., Mohammed Minhaas B. ; Rathod, Nihesh ; Shriram, Sharad ; Sundaresan, Rajesh ; Vaidhiyan, Nidhin Koshy ; Yasodharan, Sarath</creatorcontrib><description>We provide a methodology by which an epidemiologist may arrive at an optimal design for a survey whose goal is to estimate the disease burden in a population. For serosurveys with a given budget of
C
rupees, a specified set of tests with costs, sensitivities, and specificities, we show the existence of optimal designs in four different contexts, including the well known c-optimal design. Usefulness of the results are illustrated via numerical examples. Our results are applicable to a wide range of epidemiological surveys under the assumptions that the estimate’s Fisher-information matrix satisfies a uniform positive definite criterion.</description><identifier>ISSN: 0976-8386</identifier><identifier>EISSN: 0976-8394</identifier><identifier>DOI: 10.1007/s13571-021-00267-w</identifier><identifier>PMID: 34690461</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Mathematics and Statistics ; Statistics</subject><ispartof>Sankhyā. Series B (2008), 2022-11, Vol.84 (2), p.472-494</ispartof><rights>Indian Statistical Institute 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-a3e0c9bbb100e80af62bdf92f62f4530f8efb270f7d78790dd7582eb2a29e1d53</citedby><cites>FETCH-LOGICAL-c423t-a3e0c9bbb100e80af62bdf92f62f4530f8efb270f7d78790dd7582eb2a29e1d53</cites><orcidid>0000-0002-0501-1433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13571-021-00267-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13571-021-00267-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Athreya, Siva</creatorcontrib><creatorcontrib>Babu, Giridhara R.</creatorcontrib><creatorcontrib>Iyer, Aniruddha</creatorcontrib><creatorcontrib>S., Mohammed Minhaas B.</creatorcontrib><creatorcontrib>Rathod, Nihesh</creatorcontrib><creatorcontrib>Shriram, Sharad</creatorcontrib><creatorcontrib>Sundaresan, Rajesh</creatorcontrib><creatorcontrib>Vaidhiyan, Nidhin Koshy</creatorcontrib><creatorcontrib>Yasodharan, Sarath</creatorcontrib><title>COVID-19: Optimal Design of Serosurveys for Disease Burden Estimation</title><title>Sankhyā. Series B (2008)</title><addtitle>Sankhya B</addtitle><description>We provide a methodology by which an epidemiologist may arrive at an optimal design for a survey whose goal is to estimate the disease burden in a population. For serosurveys with a given budget of
C
rupees, a specified set of tests with costs, sensitivities, and specificities, we show the existence of optimal designs in four different contexts, including the well known c-optimal design. Usefulness of the results are illustrated via numerical examples. Our results are applicable to a wide range of epidemiological surveys under the assumptions that the estimate’s Fisher-information matrix satisfies a uniform positive definite criterion.</description><subject>Mathematics and Statistics</subject><subject>Statistics</subject><issn>0976-8386</issn><issn>0976-8394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UV1PwjAUbYxGCPIHfNqjL9OuXdfWBxMFVBISHvx4bbrtFkfGiu0G4d9bhJD4YpPmNrnnnNt7DkLXCb5NMOZ3PqGMJzEm4WKS8Xh7hvpY8iwWVKbnp7fIemjo_RKHwwSlVF6iHk0zidMs6aPJaP45HceJvI_m67Za6Toag68WTWRN9AbO-s5tYOcjY100rjxoD9FT50pooonfE9rKNlfowujaw_BYB-jjefI-eo1n85fp6HEWFymhbawp4ELmeR42AIG1yUheGklCNSmj2AgwOeHY8JILLnFZciYI5EQTCUnJ6AA9HHTXXb6CsoCmdbpWaxf-4XbK6kr97TTVl1rYjRKMpCnOgsDNUcDZ7w58q1aVL6CudQO284owwfbOcBqg5AAtggnegTmNSbDaR6AOEagQgfqNQG0DiR5IPoCbBTi1tJ1rgif_sX4AgJSIew</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Athreya, Siva</creator><creator>Babu, Giridhara R.</creator><creator>Iyer, Aniruddha</creator><creator>S., Mohammed Minhaas B.</creator><creator>Rathod, Nihesh</creator><creator>Shriram, Sharad</creator><creator>Sundaresan, Rajesh</creator><creator>Vaidhiyan, Nidhin Koshy</creator><creator>Yasodharan, Sarath</creator><general>Springer India</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0501-1433</orcidid></search><sort><creationdate>20221101</creationdate><title>COVID-19: Optimal Design of Serosurveys for Disease Burden Estimation</title><author>Athreya, Siva ; Babu, Giridhara R. ; Iyer, Aniruddha ; S., Mohammed Minhaas B. ; Rathod, Nihesh ; Shriram, Sharad ; Sundaresan, Rajesh ; Vaidhiyan, Nidhin Koshy ; Yasodharan, Sarath</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-a3e0c9bbb100e80af62bdf92f62f4530f8efb270f7d78790dd7582eb2a29e1d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mathematics and Statistics</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athreya, Siva</creatorcontrib><creatorcontrib>Babu, Giridhara R.</creatorcontrib><creatorcontrib>Iyer, Aniruddha</creatorcontrib><creatorcontrib>S., Mohammed Minhaas B.</creatorcontrib><creatorcontrib>Rathod, Nihesh</creatorcontrib><creatorcontrib>Shriram, Sharad</creatorcontrib><creatorcontrib>Sundaresan, Rajesh</creatorcontrib><creatorcontrib>Vaidhiyan, Nidhin Koshy</creatorcontrib><creatorcontrib>Yasodharan, Sarath</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Sankhyā. Series B (2008)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Athreya, Siva</au><au>Babu, Giridhara R.</au><au>Iyer, Aniruddha</au><au>S., Mohammed Minhaas B.</au><au>Rathod, Nihesh</au><au>Shriram, Sharad</au><au>Sundaresan, Rajesh</au><au>Vaidhiyan, Nidhin Koshy</au><au>Yasodharan, Sarath</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COVID-19: Optimal Design of Serosurveys for Disease Burden Estimation</atitle><jtitle>Sankhyā. Series B (2008)</jtitle><stitle>Sankhya B</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>84</volume><issue>2</issue><spage>472</spage><epage>494</epage><pages>472-494</pages><issn>0976-8386</issn><eissn>0976-8394</eissn><abstract>We provide a methodology by which an epidemiologist may arrive at an optimal design for a survey whose goal is to estimate the disease burden in a population. For serosurveys with a given budget of
C
rupees, a specified set of tests with costs, sensitivities, and specificities, we show the existence of optimal designs in four different contexts, including the well known c-optimal design. Usefulness of the results are illustrated via numerical examples. Our results are applicable to a wide range of epidemiological surveys under the assumptions that the estimate’s Fisher-information matrix satisfies a uniform positive definite criterion.</abstract><cop>New Delhi</cop><pub>Springer India</pub><pmid>34690461</pmid><doi>10.1007/s13571-021-00267-w</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-0501-1433</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0976-8386 |
ispartof | Sankhyā. Series B (2008), 2022-11, Vol.84 (2), p.472-494 |
issn | 0976-8386 0976-8394 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8524406 |
source | Springer Nature - Complete Springer Journals |
subjects | Mathematics and Statistics Statistics |
title | COVID-19: Optimal Design of Serosurveys for Disease Burden Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A42%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COVID-19:%20Optimal%20Design%20of%20Serosurveys%20for%20Disease%20Burden%20Estimation&rft.jtitle=Sankhy%C4%81.%20Series%20B%20(2008)&rft.au=Athreya,%20Siva&rft.date=2022-11-01&rft.volume=84&rft.issue=2&rft.spage=472&rft.epage=494&rft.pages=472-494&rft.issn=0976-8386&rft.eissn=0976-8394&rft_id=info:doi/10.1007/s13571-021-00267-w&rft_dat=%3Cproquest_pubme%3E2585904673%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2585904673&rft_id=info:pmid/34690461&rfr_iscdi=true |